Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug;1757(8):996-1011.
doi: 10.1016/j.bbabio.2006.01.005. Epub 2006 Jan 30.

Charge compensation during the phagocyte respiratory burst

Affiliations
Free article
Review

Charge compensation during the phagocyte respiratory burst

Ricardo Murphy et al. Biochim Biophys Acta. 2006 Aug.
Free article

Abstract

The phagocyte NADPH oxidase produces superoxide anion (O(2)(.-)) by the electrogenic process of moving electrons across the cell membrane. This charge translocation must be compensated to prevent self-inhibition by extreme membrane depolarization. Examination of the mechanisms of charge compensation reveals that these mechanisms perform several other vital functions beyond simply supporting oxidase activity. Voltage-gated proton channels compensate most of the charge translocated by the phagocyte NADPH oxidase in human neutrophils and eosinophils. Quantitative modeling of NADPH oxidase in the plasma membrane supports this conclusion and shows that if any other conductance is present, it must be miniscule. In addition to charge compensation, proton flux from the cytoplasm into the phagosome (a) helps prevent large pH excursions both in the cytoplasm and in the phagosome, (b) minimizes osmotic disturbances, and (c) provides essential substrate protons for the conversion of O(2)(*-) to H(2)O(2) and then to HOCl. A small contribution by K+ or Cl- fluxes may offset the acidity of granule contents to keep the phagosome pH near neutral, facilitating release of bactericidal enzymes. In summary, the mechanisms used by phagocytes for charge compensation during the respiratory burst would still be essential to phagocyte function, even if NADPH oxidase were not electrogenic.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources