Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Aug 15;267(23):16403-11.

Inhibition of ubiquitin-protein ligase (E3) by mono- and bifunctional phenylarsenoxides. Evidence for essential vicinal thiols and a proximal nucleophile

Affiliations
  • PMID: 1644825
Free article
Comparative Study

Inhibition of ubiquitin-protein ligase (E3) by mono- and bifunctional phenylarsenoxides. Evidence for essential vicinal thiols and a proximal nucleophile

E S Berleth et al. J Biol Chem. .
Free article

Abstract

Trivalent arsenoxides bind to vicinal thiol groups of proteins. We showed previously that the simplest trivalent arsenoxide, inorganic arsenite, inhibits ubiquitin-dependent protein degradation in rabbit reticulocyte lysate (Klemperer, N.S., and Pickart, C.M. (1989) J. Biol. Chem. 264, 19245-19242). We now show that, relative to arsenite, phenylarsenoxides are 10-165-fold more potent inhibitors of protein degradation in the same system (K0.5 for inhibition by p-aminophenylarsenoxide was 3.5-20 microM, depending on the substrate). In the ubiquitin-dependent proteolytic pathway, covalent ligation of ubiquitin to protein substrates targets the latter for degradation. In certain cases, specificity in ubiquitin-substrate conjugation depends critically upon the properties of ubiquitin-protein ligase or E3. Among other effects, p-aminophenylarsenoxide decreased the steady-state level of ubiquitinated human alpha-lactalbumin; this is a substrate which is acted upon directly by ubiquitin-protein ligase-alpha (E3-alpha). This finding suggests that phenylarsenoxides (unlike arsenite) inhibit E3. Several other lines of evidence confirm this conclusion. 1) A complex of E3-alpha and the 14-kDa ubiquitin-conjugating (E2) isozyme binds to phenylarsenoxide-Sepharose resin, with the E3 component of the complex mediating binding. 2) p-Aminophenylarsenoxide inhibited isolated E3 (K0.5 approximately 50 microM); inhibition was readily reversed by addition of dithiothreitol (which contains a competing vicinal thiol group), but not by beta-mercaptoethylamine (a monothiol). 3) A bifunctional phenylarsenoxide (bromoacetylaminophenylarsenoxide) rapidly and irreversibly inactivated E3; bromoacetyl aniline, which lacks an arsenoxide moiety, did not inhibit E3. These results suggest that E3 possesses essential vicinal thiol groups and that there is a reactive nucleophile proximal to the vicinal thiol site. The bifunctional phenylarsenoxide should be a useful tool for probing the relationship between structure and function in E3. As expected from prior results with arsenite, p-aminophenylarsenoxide was also a potent inhibitor of the turnover of ubiquitin-(human) alpha-lactalbumin conjugates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources