Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;54(1):336-42.
doi: 10.1002/art.21553.

Toll-like receptor 9 signaling protects against murine lupus

Affiliations
Free article

Toll-like receptor 9 signaling protects against murine lupus

Xiaobo Wu et al. Arthritis Rheum. 2006 Jan.
Free article

Abstract

Objective: Hypomethylated CpG-containing DNA, which is recognized by Toll-like receptor 9 (TLR-9), has been strongly implicated in the pathogenesis of autoantibody-mediated diseases such as systemic lupus erythematosus. This study was undertaken to determine the role of TLR-9 in the MRL/+ and MRL/lpr models of murine lupus.

Methods: TLR-9-deficient MRL mice were generated by backcrossing a TLR-9-deficient allele against the MRL backgrounds by a speed congenic technique. Parameters of murine lupus were examined by routine methods. Regulatory T cell activity was assessed by autologous mixed lymphocyte reaction (AMLR), an in vitro assay for autoreactivity.

Results: Surprisingly, TLR-9-deficient animals of both the MRL/+ and the MRL/lpr backgrounds developed more severe lupus, as judged by anti-DNA and rheumatoid factor autoantibodies, total serum Ig isotypes, lymphadenopathy, inflammatory infiltrates in the salivary gland and kidney, proteinuria, and mortality, in comparison with their TLR-9-sufficient littermates. In vitro, regulatory T cells from TLR-9-deficient animals were impaired in their ability to suppress the AMLR.

Conclusion: In the MRL model of murine lupus, TLR-9 signaling plays a protective role, perhaps by modulating the activity of regulatory T cells. These results contrast with findings of recent studies that implicate TLR-9 in the pathogenesis of anti-DNA responses, based in part on investigations in incompletely backcrossed TLR-9-deficient MRL/lpr mice in vivo or transgenic B cells in vitro. The present results highlight the need for caution in the assessment of disease paradigms based on the study of isolated cell populations in vitro, as well as in vivo studies of knockout animals involving non-ideal genetic models.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources