Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 1;118(Pt 23):5615-23.
doi: 10.1242/jcs.02663.

Carboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells

Affiliations

Carboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells

Olivier Mignen et al. J Cell Sci. .

Abstract

Blocking calcium entry may prevent normal and pathological cell proliferation. There is evidence suggesting that molecules such as carboxyamidotriazole, widely used in anti-cancer therapy based on its ability to block calcium entry in nonexcitable cells, also have antiproliferative properties. We found that carboxyamidotriazole and the capacitative calcium entry blocker 2-aminoethoxydiphenyl borate inhibited proliferation in HEK-293 cells with IC50 values of 1.6 and 50 microM, respectively. Capacitative calcium entry is activated as a result of intracellular calcium store depletion. However, non-capacitative calcium entry pathways exist that are independent of store depletion and are activated by arachidonic acid and diacylglycerol, generated subsequent to G protein coupled receptor stimulation. We found that carboxyamidotriazole completely inhibited the capacitative calcium entry and had no effect on the amplitude of arachidonic-acid-activated non-capacitative calcium entry. However, investigation of the effects of carboxyamidotriazole on mitochondrial calcium dynamics induced by carbachol, capacitative calcium entry and exogenously set calcium loads in intact and digitonin-permeabilized cells revealed that carboxyamidotriazole inhibited both calcium entry and mitochondrial calcium uptake in a time-dependent manner. Mitochondrial inner-membrane potential was altered by carboxyamidotriazole treatment, suggesting that carboxyamidotriazole antagonizes mitochondrial calcium import and thus local calcium clearance, which is crucial for the maintenance of capacitative calcium entry.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources