Dominant-negative mutant phenotypes and the regulation of translation elongation factor 2 levels in yeast
- PMID: 16214807
- PMCID: PMC1253829
- DOI: 10.1093/nar/gki882
Dominant-negative mutant phenotypes and the regulation of translation elongation factor 2 levels in yeast
Abstract
The eukaryotic translation elongation factor 2 (eEF2), a member of the G-protein superfamily, catalyzes the post-peptidyl transferase translocation of deacylated tRNA and peptidyl tRNA to the ribosomal E- and P-sites. eEF2 is modified by a unique post-translational modification: the conversion of His699 to diphthamide at the tip of domain IV, the region proposed to mimic the anticodon of tRNA. Structural models indicate a hinge is important for conformational changes in eEF2. Mutations of V488 in the hinge region and H699 in the tip of domain IV produce non-functional mutants that when co-expressed with the wild-type eEF2 result in a dominant-negative growth phenotype in the yeast Saccharomyces cerevisiae. This phenotype is linked to reduced levels of the wild-type protein, as total eEF2 levels are unchanged. Changes in the promoter, 5'-untranslated region (5'-UTR) or 3'-UTR of the EFT2 gene encoding eEF2 do not allow overexpression of the protein, showing that eEF2 levels are tightly regulated. The H699K mutant, however, also alters translation phenotypes. The observed regulation suggests that the cell needs an optimum amount of active eEF2 to grow properly. This provides information about a new mechanism by which translation is efficiently maintained.
Figures





Similar articles
-
Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance.J Biol Chem. 2006 Oct 27;281(43):32639-48. doi: 10.1074/jbc.M607076200. Epub 2006 Sep 1. J Biol Chem. 2006. PMID: 16950777
-
Tight interaction of eEF2 in the presence of Stm1 on ribosome.J Biochem. 2018 Mar 1;163(3):177-185. doi: 10.1093/jb/mvx070. J Biochem. 2018. PMID: 29069440
-
Chaperone Function of Hgh1 in the Biogenesis of Eukaryotic Elongation Factor 2.Mol Cell. 2019 Apr 4;74(1):88-100.e9. doi: 10.1016/j.molcel.2019.01.034. Epub 2019 Mar 12. Mol Cell. 2019. PMID: 30876804
-
Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation.Cell Biochem Funct. 2011 Apr;29(3):227-34. doi: 10.1002/cbf.1740. Epub 2011 Mar 10. Cell Biochem Funct. 2011. PMID: 21394738 Review.
-
SSD1 modifies phenotypes of Elongator mutants.Curr Genet. 2020 Jun;66(3):481-485. doi: 10.1007/s00294-019-01048-9. Epub 2019 Nov 27. Curr Genet. 2020. PMID: 31776648 Free PMC article. Review.
Cited by
-
Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP.Nucleic Acids Res. 2007;35(14):4597-607. doi: 10.1093/nar/gkm468. Epub 2007 Jun 22. Nucleic Acids Res. 2007. PMID: 17586816 Free PMC article.
-
Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation.J Biol Chem. 2010 Oct 15;285(42):32200-12. doi: 10.1074/jbc.M110.146662. Epub 2010 Aug 10. J Biol Chem. 2010. PMID: 20699223 Free PMC article.
-
Functional characterization of ribosomal protein L15 from Saccharomyces cerevisiae.Curr Genet. 2009 Apr;55(2):111-25. doi: 10.1007/s00294-009-0228-z. Epub 2009 Jan 28. Curr Genet. 2009. PMID: 19184027
-
eEF2 diphthamide modification restrains spurious frameshifting to maintain translational fidelity.Nucleic Acids Res. 2023 Jul 21;51(13):6899-6913. doi: 10.1093/nar/gkad461. Nucleic Acids Res. 2023. PMID: 37246715 Free PMC article.
-
Spinocerebellar ataxias (SCAs) caused by common mutations.Neurogenetics. 2021 Oct;22(4):235-250. doi: 10.1007/s10048-021-00662-5. Epub 2021 Aug 16. Neurogenetics. 2021. PMID: 34401960 Free PMC article. Review.
References
-
- Hershey J.W.B., Merrick W.C. Pathway and Mechanism of Initiation of Protein Synthesis. In: Sonenberg N., Hershey J.W.B., Mathews M.B., editors. Translational Control of Gene Expression. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2000. pp. 33–88.
-
- Merrick W.C., Nyborg J. The Protein Biosynthesis Elongation Cycle. In: Sonenberg N., Hershey J.W.B., Mathews M.B., editors. Translational Control of Gene Expression. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2000. pp. 89–126.
-
- Welch E.M., Wang W., Peltz S.W. Translation Termination: It's Not the End of the Story. In: Sonenberg N., Hershey J.W.B., Mathews M.B., editors. Translational Control of Gene Expression. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2000. pp. 467–485.
-
- Proud C.G. Regulation of mRNA translation. Essays Biochem. 2001;37:97–108. - PubMed
-
- Huang Y.S., Richter J.D. Regulation of local mRNA translation. Curr. Opin. Cell Biol. 2004;16:308–313. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous