Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct;27(10):999-1010.
doi: 10.1002/bies.20290.

Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history

Affiliations
Review

Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history

Thomas Flatt et al. Bioessays. 2005 Oct.

Abstract

Understanding how traits are integrated at the organismal level remains a fundamental problem at the interface of developmental and evolutionary biology. Hormones, regulatory signaling molecules that coordinate multiple developmental and physiological processes, are major determinants underlying phenotypic integration. The probably best example for this is the lipid-like juvenile hormone (JH) in insects. Here we review the manifold effects of JH, the most versatile animal hormone, with an emphasis on the fruit fly Drosophila melanogaster, an organism amenable to both genetics and endocrinology. JH affects a remarkable number of processes and traits in Drosophila development and life history, including metamorphosis, behavior, reproduction, diapause, stress resistance and aging. While many molecular details underlying JH signaling remain unknown, we argue that studying "hormonal pleiotropy" offers intriguing insights into phenotypic integration and the mechanisms underlying life history evolution. In particular, we illustrate the role of JH as a key mediator of life history trade-offs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources