Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:59:19-42.
doi: 10.1146/annurev.micro.58.030603.123749.

Signaling in the arbuscular mycorrhizal symbiosis

Affiliations
Review

Signaling in the arbuscular mycorrhizal symbiosis

Maria J Harrison. Annu Rev Microbiol. 2005.

Abstract

Many microorganisms form symbioses with plants that range, on a continuous scale, from parasitic to mutualistic. Among these, the most widespread mutualistic symbiosis is the arbuscular mycorrhiza, formed between arbuscular mycorrhizal (AM) fungi and vascular flowering plants. These associations occur in terrestrial ecosystems throughout the world and have a global impact on plant phosphorus nutrition. The arbuscular mycorrhiza is an endosymbiosis in which the fungus inhabits the root cortical cells and obtains carbon provided by the plant while it transfers mineral nutrients from the soil to the cortical cells. Development of the symbiosis involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells. The aim of this review is to explore the current understanding of the signals and signaling pathways used by the symbionts for the development of the AM symbiosis. Although the signal molecules used for initial communication are not yet known, recent studies point to their existence. Within the plant, there is evidence of arbuscular mycorrhiza-specific signals and of systemic signaling that influences phosphate-starvation responses and root development. The landmark cloning of three plant signaling proteins required for the development of the symbiosis has provided the first insights into a signaling pathway that is used by AM fungi and by rhizobia for their symbiotic associations with legumes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources