Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data
- PMID: 16081473
- PMCID: PMC2819184
- DOI: 10.1093/bioinformatics/bti611
Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data
Abstract
Motivation: Array Comparative Genomic Hybridization (CGH) can reveal chromosomal aberrations in the genomic DNA. These amplifications and deletions at the DNA level are important in the pathogenesis of cancer and other diseases. While a large number of approaches have been proposed for analyzing the large array CGH datasets, the relative merits of these methods in practice are not clear.
Results: We compare 11 different algorithms for analyzing array CGH data. These include both segment detection methods and smoothing methods, based on diverse techniques such as mixture models, Hidden Markov Models, maximum likelihood, regression, wavelets and genetic algorithms. We compute the Receiver Operating Characteristic (ROC) curves using simulated data to quantify sensitivity and specificity for various levels of signal-to-noise ratio and different sizes of abnormalities. We also characterize their performance on chromosomal regions of interest in a real dataset obtained from patients with Glioblastoma Multiforme. While comparisons of this type are difficult due to possibly sub-optimal choice of parameters in the methods, they nevertheless reveal general characteristics that are helpful to the biological investigator.
Figures
Similar articles
-
Quantile smoothing of array CGH data.Bioinformatics. 2005 Apr 1;21(7):1146-53. doi: 10.1093/bioinformatics/bti148. Epub 2004 Nov 30. Bioinformatics. 2005. PMID: 15572474
-
High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays.Genes Chromosomes Cancer. 2003 Nov;38(3):215-25. doi: 10.1002/gcc.10273. Genes Chromosomes Cancer. 2003. PMID: 14506695
-
Accurate detection of aneuploidies in array CGH and gene expression microarray data.Bioinformatics. 2004 Dec 12;20(18):3533-43. doi: 10.1093/bioinformatics/bth440. Epub 2004 Jul 29. Bioinformatics. 2004. PMID: 15284100
-
Microarray-based comparative genomic hybridization and its applications in human genetics.Clin Genet. 2004 Dec;66(6):488-95. doi: 10.1111/j.1399-0004.2004.00322.x. Clin Genet. 2004. PMID: 15521975 Review.
-
[Microarray-based comparative genomic hybridization in the study of constitutional chromosomal abnormalities].Pathol Biol (Paris). 2007 Feb;55(1):13-8. doi: 10.1016/j.patbio.2006.04.002. Epub 2006 May 11. Pathol Biol (Paris). 2007. PMID: 16697120 Review. French.
Cited by
-
Parsimonious higher-order hidden Markov models for improved array-CGH analysis with applications to Arabidopsis thaliana.PLoS Comput Biol. 2012 Jan;8(1):e1002286. doi: 10.1371/journal.pcbi.1002286. Epub 2012 Jan 12. PLoS Comput Biol. 2012. PMID: 22253580 Free PMC article.
-
Copy number variation in the cattle genome.Funct Integr Genomics. 2012 Nov;12(4):609-24. doi: 10.1007/s10142-012-0289-9. Epub 2012 Jul 13. Funct Integr Genomics. 2012. PMID: 22790923 Review.
-
Detecting simultaneous changepoints in multiple sequences.Biometrika. 2010 Sep;97(3):631-645. doi: 10.1093/biomet/asq025. Epub 2010 Jun 16. Biometrika. 2010. PMID: 22822250 Free PMC article.
-
Identification and validation of copy number variants using SNP genotyping arrays from a large clinical cohort.BMC Genomics. 2012 Jun 15;13:241. doi: 10.1186/1471-2164-13-241. BMC Genomics. 2012. PMID: 22702538 Free PMC article.
-
Using expression arrays for copy number detection: an example from E. coli.BMC Bioinformatics. 2007 Jun 14;8:203. doi: 10.1186/1471-2105-8-203. BMC Bioinformatics. 2007. PMID: 17570850 Free PMC article.
References
-
- Autio R, Hautaniemi S, Kauraniemi P, Yli-Harja O, Astola J, Wolf M, Kallioniemi A. CGH-Plotter: MATLAB toolbox for CGH-data analysis. Bioinformatics. 2003;19:1714–1715. - PubMed
-
- Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI. High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res. 2005;65:4088–4096. - PubMed
-
- Brennan C, Zhang Y, Leo C, Feng B, Cauwels C, Aguirre AJ, Kim M, Protopopov A, Chin L. High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res. 2004;64:4744–4748. - PubMed
-
- Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 1979;74:829–836.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources