Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;206(1-2):116-32.
doi: 10.1016/j.heares.2004.12.012.

Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body

Affiliations

Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body

Helen M Brew et al. Hear Res. 2005 Aug.

Abstract

Many central auditory nuclei preserve the tonotopic organization of their afferent inputs, generating a frequency "map" across the nucleus. In the medial nucleus of the trapezoid body (MNTB) the most medial neurons receive inputs corresponding to the highest frequency sounds and the most lateral neurons have the lowest characteristic frequencies. Whole-cell patch recording from MNTB principal neurons in rat brainstem slices demonstrates a corresponding tonotopic organization of voltage-gated outward potassium currents. Medial MNTB neurons had larger total outward K+ current amplitudes than lateral neurons and similar medial to-lateral gradients were observed for two K+ current subtypes distinguished by their low and high voltage activation thresholds. In contrast, a third K+ conductance with an intermediate voltage threshold and slower kinetics showed an inverse gradient (being smallest in medial MNTB). The orthogonal axes of MNTB did not exhibit potassium current gradients (dorsal-to-ventral, or rostral-to-caudal). The input resistance was unchanged across the MNTB, but a slow capacitative component was enhanced in lateral neurons. These data demonstrate that the intrinsic properties of rat MNTB neurons are tuned across the tonotopic axis so as to promote shorter action potentials, faster firing and therefore greater accuracy in transmission of auditory information in the high characteristic frequency regions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources