Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Aug;12(8):654-62.
doi: 10.1038/nsmb959. Epub 2005 Jul 17.

Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair

Affiliations
Comparative Study

Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair

Gagan B Panigrahi et al. Nat Struct Mol Biol. 2005 Aug.

Abstract

Expansion of (CTG)*(CAG) repeats, the cause of 14 or more diseases, is presumed to arise through escaped repair of slipped DNAs. We report the fidelity of slipped-DNA repair using human cell extracts and DNAs with slip-outs of (CAG)(20) or (CTG)(20). Three outcomes occurred: correct repair, escaped repair and error-prone repair. The choice of repair path depended on nick location and slip-out composition (CAG or CTG). A new form of error-prone repair was detected whereby excess repeats were incompletely excised, constituting a previously unknown path to generate expansions but not deletions. Neuron-like cell extracts yielded each of the three repair outcomes, supporting a role for these processes in (CTG)*(CAG) instability in patient post-mitotic brain cells. Mismatch repair (MMR) and nucleotide excision repair (NER) proteins hMSH2, hMSH3, hMLH1, XPF, XPG or polymerase beta were not required-indicating that their role in instability may precede that of slip-out processing. Differential processing of slipped repeats may explain the differences in mutation patterns between various disease loci or tissues.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources