Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jul;26(1):21-7.
doi: 10.1183/09031936.05.00116104.

Modulation of airway inflammation and resistance in mice by a nicotinic receptor agonist

Affiliations
Free article
Comparative Study

Modulation of airway inflammation and resistance in mice by a nicotinic receptor agonist

M-R Blanchet et al. Eur Respir J. 2005 Jul.
Free article

Abstract

Nicotinic agonists, including 1,1-dimethyl-4-phenylpiperazinium (DMPP), have anti-inflammatory properties and in some instances smooth muscle relaxing effects. Since inflammation and airway smooth muscle contraction are two major components of asthma, the present authors investigated the effects of DMPP on airway inflammation and airway resistance in a mouse model of asthma. Mice were sensitised and challenged with ovalbumin (OVA) and treated either intraperitoneally or intranasally with DMPP. The effect of DMPP was tested on airway inflammation, airway resistance and on the increase of intracellular calcium in bronchial smooth muscle cells. DMPP given either during sensitisation, OVA challenges or throughout the protocol prevented lung inflammation and decreased the serum level of OVA specific immunoglobulin E. DMPP administration reduced the number of total cells, lymphocytes and eosinophils in the bronchoalveolar lavage (BAL) fluid. Intranasal DMPP administration was as effective as dexamethasone (DEXA) in reducing total cell count and eosinophil counts in BAL fluid. DMPP, but not DEXA, reduced tissue inflammation. Intranasal DMPP, given 10 min before the test, reduced airway responsiveness to metacholine. DMPP also reduced the increase in intracellular calcium in response to bradykinin. In conclusion, these results show that 1,1-dimethyl-4-phenylpiperazinium reduces lung inflammation and prevents airway hyperresponsiveness in the mouse model of asthma.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources