Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 1;121(7):1097-108.
doi: 10.1016/j.cell.2005.04.016.

Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development

Affiliations
Free article

Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development

Dan Leaman et al. Cell. .
Free article

Abstract

MicroRNAs are small noncoding RNAs that control gene function posttranscriptionally through mRNA degradation or translational inhibition. Much has been learned about the processing and mechanism of action of microRNAs, but little is known about their biological function. Here, we demonstrate that injection of 2'O-methyl antisense oligoribonucleotides into early Drosophila embryos leads to specific and efficient depletion of microRNAs and thus permits systematic loss-of-function analysis in vivo. Twenty-five of the forty-six embryonically expressed microRNAs show readily discernible defects; pleiotropy is moderate and family members display similar yet distinct phenotypes. Processes under microRNA regulation include cellularization and patterning in the blastoderm, morphogenesis, and cell survival. The largest microRNA family in Drosophila (miR-2/6/11/13/308) is required for suppressing embryonic apoptosis; this is achieved by differential posttranscriptional repression of the proapoptotic factors hid, grim, reaper, and sickle. Our findings demonstrate that microRNAs act as specific and essential regulators in a wide range of developmental processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources