Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;38(2):99-113.
doi: 10.1016/j.jbi.2004.11.007.

Algorithms for rapid outbreak detection: a research synthesis

Affiliations
Free article
Comparative Study

Algorithms for rapid outbreak detection: a research synthesis

David L Buckeridge et al. J Biomed Inform. 2005 Apr.
Free article

Abstract

The threat of bioterrorism has stimulated interest in enhancing public health surveillance to detect disease outbreaks more rapidly than is currently possible. To advance research on improving the timeliness of outbreak detection, the Defense Advanced Research Project Agency sponsored the Bio-event Advanced Leading Indicator Recognition Technology (BioALIRT) project beginning in 2001. The purpose of this paper is to provide a synthesis of research on outbreak detection algorithms conducted by academic and industrial partners in the BioALIRT project. We first suggest a practical classification for outbreak detection algorithms that considers the types of information encountered in surveillance analysis. We then present a synthesis of our research according to this classification. The research conducted for this project has examined how to use spatial and other covariate information from disparate sources to improve the timeliness of outbreak detection. Our results suggest that use of spatial and other covariate information can improve outbreak detection performance. We also identified, however, methodological challenges that limited our ability to determine the benefit of using outbreak detection algorithms that operate on large volumes of data. Future research must address challenges such as forecasting expected values in high-dimensional data and generating spatial and multivariate test data sets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources