Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;22(2):221-33.
doi: 10.1016/j.immuni.2005.01.006.

Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape

Affiliations
Free article

Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape

Wilbert Zwart et al. Immunity. 2005 Feb.
Free article

Abstract

Major Histocompatibility Complex (MHC) class II molecules, including Human Leukocyte Antigen (HLA)-DR, present peptide fragments from proteins degraded in the endocytic pathway. HLA-DR is targeted to late-endocytic structures named MHC class II-containing Compartments (MIIC), where it interacts with HLA-DM. This chaperone stabilizes HLA-DR during peptide exchange and is critical for successful peptide loading. To follow this process in living cells, we have generated cells containing HLA-DR3/Cyan Fluorescent Protein (CFP), HLA-DM/Yellow Fluorescent Protein (YFP), and invariant chain. HLA-DR/DM interactions were observed by Fluorescence Resonance Energy Transfer (FRET). These interactions were pH insensitive, yet occurred only in internal structures and not at the limiting membrane of MIIC. In a cellular model of infection, phagosomes formed a limiting membrane surrounding internalized Salmonella. HLA-DR and HLA-DM did not interact in Salmonella-induced vacuoles, and HLA-DR was not loaded with antigens. The absence of HLA-DR/DM interactions at the limiting membrane prevents local loading of MHC class II molecules in phagosomes. This may allow these bacteria to successfully evade the immune system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources