Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 8;280(14):14051-6.
doi: 10.1074/jbc.M500030200. Epub 2005 Feb 4.

The trap-like relaxin-binding site of the leucine-rich G-protein-coupled receptor 7

Affiliations
Free article

The trap-like relaxin-binding site of the leucine-rich G-protein-coupled receptor 7

Erika E Büllesbach et al. J Biol Chem. .
Free article

Abstract

The pleated sheet region of the leucine-rich G-protein-coupled receptor 7 supports a relaxin-binding group of amino acids that perfectly matches the binding cassette of relaxin. Arginines B13 and B17 are each chelated by an aspartic acid/glutamic acid pair and by isoleucine B20, which, offset by a one-quarter helix turn from a straight line connecting the arginines, interacts with a cluster of hydrophobic amino acids. The binding cassette of relaxin cuts at an angle of approximately 45 degrees across five parallel leucine-rich repeats. The arginine residues 13 and 17, which evolve parallel from the B-chain alpha-helix of relaxin, neutralize the charge repulsion of the juxta-posed acidic groups on the receptor and thereby trigger closure of a hydrogen bonding network around the guanidinium groups. Thus, relaxin is bound by synchronized chelation of two arginines and stabilized by hydrophobic interaction of isoleucine B20 with tryptophan, isoleucine, and leucine in neighboring leucine-rich repeats of the receptor. Deletion of any one of the three features diminishes interaction to the level of nonspecific binding. This model explains the exquisite sensitivity of relaxin binding avidity to minute changes in the disposition of the guanidinium and the size dependence of the hydrophobic binding residue in position B20.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources