Transcriptional regulation and the role of diverse coactivators in animal cells
- PMID: 15680973
- DOI: 10.1016/j.febslet.2004.12.007
Transcriptional regulation and the role of diverse coactivators in animal cells
Abstract
Transcriptional regulation in eukaryotes involves structurally and functionally distinct nuclear RNA polymerases, corresponding general initiation factors, gene-specific (DNA-binding) regulatory factors, and a variety of coregulatory factors that act either through chromatin modifications (e.g. histone acetyltransferases and methyltransferases) or more directly (e.g. Mediator) to facilitate formation and function of the preinitiation complex. Biochemical studies with purified factors and DNA versus recombinant chromatin templates have provided insights into the nature and mechanism of action of these factors, including pathways for their sequential function in chromatin remodeling and preinitiation complex formation/function (transcription) steps and a possible role in facilitating the transition between these steps.
Similar articles
-
Role of protein methylation in chromatin remodeling and transcriptional regulation.Oncogene. 2001 May 28;20(24):3014-20. doi: 10.1038/sj.onc.1204325. Oncogene. 2001. PMID: 11420716 Review.
-
The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression.J Cell Biochem. 2007 Dec 1;102(5):1256-70. doi: 10.1002/jcb.21356. J Cell Biochem. 2007. PMID: 17471507
-
Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation.Oncogene. 2007 Aug 13;26(37):5341-57. doi: 10.1038/sj.onc.1210604. Oncogene. 2007. PMID: 17694077 Review.
-
Biological control through regulated transcriptional coactivators.Cell. 2004 Oct 15;119(2):157-67. doi: 10.1016/j.cell.2004.09.037. Cell. 2004. PMID: 15479634 Review.
-
Epigenetic control of ovarian function: the emerging role of histone modifications.Mol Cell Endocrinol. 2005 Nov 24;243(1-2):12-8. doi: 10.1016/j.mce.2005.09.005. Epub 2005 Oct 10. Mol Cell Endocrinol. 2005. PMID: 16219412 Review.
Cited by
-
Wnt3a-dependent and -independent protein interaction networks of chromatin-bound β-catenin in mouse embryonic stem cells.Mol Cell Proteomics. 2013 Jul;12(7):1980-94. doi: 10.1074/mcp.M112.026914. Epub 2013 Apr 15. Mol Cell Proteomics. 2013. PMID: 23592333 Free PMC article.
-
Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control.Mol Cell Biol. 2007 Jan;27(2):651-61. doi: 10.1128/MCB.01257-06. Epub 2006 Nov 13. Mol Cell Biol. 2007. PMID: 17101803 Free PMC article.
-
Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID.Biochim Biophys Acta. 2011 Feb;1809(2):97-108. doi: 10.1016/j.bbagrm.2010.08.009. Epub 2010 Aug 26. Biochim Biophys Acta. 2011. PMID: 20800707 Free PMC article. Review.
-
Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation.Biochim Biophys Acta. 2011 Jan;1809(1):34-45. doi: 10.1016/j.bbagrm.2010.11.001. Epub 2010 Nov 13. Biochim Biophys Acta. 2011. PMID: 21081187 Free PMC article. Review.
-
A proteomics analysis of yeast Mot1p protein-protein associations: insights into mechanism.Mol Cell Proteomics. 2008 Nov;7(11):2090-106. doi: 10.1074/mcp.M800221-MCP200. Epub 2008 Jul 2. Mol Cell Proteomics. 2008. PMID: 18596064 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources