Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 15;65(3):694-701.
doi: 10.1016/j.cardiores.2004.10.041.

Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-beta

Affiliations

Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-beta

Jennifer Martin et al. Cardiovasc Res. .

Abstract

Objective: The pathological accumulation of extracellular matrix is a characteristic feature of diabetic cardiomyopathy that is directly related to a loss of function. Tranilast (n-[3,4-anthranilic acid), used for the treatment of fibrotic skin diseases, has also been shown to inhibit transforming growth factor-beta (TGF-beta)-induced matrix production in kidney epithelial cells.

Methods: To investigate the effects of tranilast in the diabetic heart, we examined its effects in cultured cardiac fibroblasts and then assessed its effects in (mRen-2)27 diabetic rats with established disease (8 weeks after streptozotocin).

Results: In vitro studies demonstrated a 58% reduction in TGF-beta1-induced 3[H]-hydroxyproline incorporation with tranilast 30 microM (p<0.01). At 16 weeks, diabetes in the Ren-2 rat was associated with increased cardiac fibrosis and evidence of TGF-beta1 activation, as measured by the abundance of phosphorylated Smad2. Despite persistent hyperglycaemia and hypertension, tranilast attenuated cardiac fibrosis by 37% (p<0.05) in association with reduction in phospho-Smad2 (p<0.01).

Conclusion: These findings indicate that tranilast has antifibrotic actions in the Ren-2 model of experimental diabetic cardiac disease by mechanisms that might attributable to reduced TGF-beta activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources