Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 1;174(3):1602-7.
doi: 10.4049/jimmunol.174.3.1602.

Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF kappa B kinase-binding kinase 1

Affiliations

Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF kappa B kinase-binding kinase 1

Ryan M O'Connell et al. J Immunol. .

Abstract

Type I IFNs are well established antiviral cytokines that have also been shown to be induced by bacteria. However, the signaling mechanisms regulating the activation of these cytokines during bacterial infections remain poorly defined. We show that although Gram-negative bacteria can activate the type I IFN pathway through TLR4, the intracellular Gram-positive bacterium Listeria monocytogenes (LM) can do so independently of TLR4 and TLR2. Furthermore, experiments using genetic mutants and chemical inhibitors suggest that LM-induced type I IFN activation occurs by an intracellular pathway involving the serine-threonine kinase TNFR-associated NF-kappaB kinase (TANK)-binding kinase 1 (TBK1). Interestingly, receptor-interacting protein 2, a component of the recently discovered nucleotide-binding oligomerization domain-dependent intracellular detection pathway, was not involved. Taken together, our data describe a novel signal transduction pathway involving TBK1 that is used by LM to activate type I IFNs. Additionally, we provide evidence that both the LM- and TLR-dependent pathways converge at TBK1 to activate type I IFNs, highlighting the central role of this molecule in modulating type I IFNs in host defense and disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances