Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 1;174(3):1557-65.
doi: 10.4049/jimmunol.174.3.1557.

Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense

Affiliations

Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense

Tim O Hirche et al. J Immunol. .

Abstract

Activated neutrophils use myeloperoxidase (MPO) to generate an array of potent toxic oxidants. In the current studies we used genetically altered mice deficient in MPO to investigate the role of the enzyme in host defense against the Gram-negative bacterium Klebsiella pneumoniae, an important human pathogen. For comparison, we used mice deficient in the antimicrobial molecule, neutrophil elastase (NE). When challenged i.p., mice deficient in either MPO or NE were markedly more susceptible to bacterial infection and death. In vitro studies suggested that MPO impairs the morphology of bacteria in a distinctive way. Of importance, our in vitro studies found that MPO mediated oxidative inactivation of NE, an enzyme that has been widely implicated in the pathogenesis of various tissue-destructive diseases. This pathway of oxidative inactivation may be physiologically relevant, because activated neutrophils isolated from MPO-deficient mice exhibited increased elastase activity. Our observations provide strong evidence that MPO, like NE, is a key player in the killing of K. pneumoniae bacteria. They also suggest that MPO may modulate NE to protect the host from the tissue-degrading activity of this proteinase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources