Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Oct;40(4-5):155-67.
doi: 10.1540/jsmr.40.155.

The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness

Affiliations
Free article
Review

The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness

Yoshihiko Chiba et al. J Smooth Muscle Res. 2004 Oct.
Free article

Abstract

Smooth muscle contraction is mediated by Ca2+-dependent and Ca2+-independent pathways. The latter Ca2+-independent pathway, termed Ca2+ sensitization, is mainly regulated by a monomeric GTP binding protein RhoA and its downstream target Rho-kinase. Recent studies suggest a possible involvement of augmented RhoA/Rho-kinase signaling in the elevated smooth muscle contraction in several human diseases. An increased bronchial smooth muscle contractility, which might be a major cause of the airway hyperresponsiveness that is a characteristic feature of asthmatics, has also been reported in bronchial asthma. Here, we will discuss the role of RhoA/Rho-kinase-mediated Ca2+ sensitization of bronchial smooth muscle contraction in the pathogenesis of airway hyperresponsiveness. Agonist-induced Ca2+ sensitization is also inherent in bronchial smooth muscle. Since the Ca2+ sensitization is sensitive to a RhoA inactivator, C3 exoenzyme, and a Rho-kinase inhibitor, Y-27632, the RhoA/Rho-kinase pathway is involved in the signaling. It is of interest that the RhoA/Rho-kinase-mediated Ca2+ sensitization of bronchial smooth muscle contraction is markedly augmented in experimental asthma. Moreover, Y-27632 relaxes the bronchospasm induced by contractile agonists and antigens in vivo. Y-27632 also has an ability to inhibit airway hyperresponsiveness induced by antigen challenge. Thus, the RhoA/Rho-kinase pathway might be a potential target for the development of new treatments for asthma, especially in airway hyperresponsiveness.

PubMed Disclaimer

Similar articles

Cited by