Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;63(1):1-14.
doi: 10.1002/neu.20116.

Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices

Affiliations
Comparative Study

Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices

Régis Pittier et al. J Neurobiol. 2005 Apr.

Abstract

The deposition of fibrin clots in vivo occurs after injury in the peripheral nervous system and their removal correlates with nerve regeneration. Fibrin clots provide a provisional matrix for invading cells, induce wound healing, and become proteolytically removed by regenerating tissue. Here, neurite extension and in vitro myelination were studied within three-dimensional fibrin matrices that were covalently modified with the sixth Ig-like domain of cell adhesion molecules L1 containing N-terminal transglutaminase substrate sequences (TG-L1Ig6) for covalent incorporation into fibrin matrices. TG-L1Ig6 is a specific receptor for alphavbeta3-integrin involved in neurite extension of PC12 cells and dorsal root ganglion neurons (DRGs). Neurite extension of PC12 cells depended on interactions between cell surface alphavbeta3 and RGD-sites provided by TG-L1Ig6. In addition, matrix properties such as fibrin crosslink density and matrix degradation by serine proteases were crucial. No involvement of matrix metalloproteinases was found. DRG neurite extension in native fibrin matrices was retarded as compared to neurite extension within L1Ig6-modified and laminin-1-containing matrices. Moreover, myelinated structures were almost exclusively found in TG-L1Ig6-modified and laminin-1-containing matrices. These results indicate that potential use of three-dimensional matrices in a biomaterials-based healing device to induce and/or help in vivo nerve regeneration requires specific structural and biological signals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources