Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;288(4):H1915-24.
doi: 10.1152/ajpheart.00956.2004. Epub 2004 Dec 2.

Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro

Affiliations
Free article

Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro

Kimiko Yamamoto et al. Am J Physiol Heart Circ Physiol. 2005 Apr.
Free article

Abstract

Pluripotent embryonic stem (ES) cells are capable of differentiating into all cell lineages, but the molecular mechanisms that regulate ES cell differentiation have not been sufficiently explored. In this study, we report that shear stress, a mechanical force generated by fluid flow, can induce ES cell differentiation. When Flk-1-positive (Flk-1(+)) mouse ES cells were subjected to shear stress, their cell density increased markedly, and a larger percentage of the cells were in the S and G(2)-M phases of the cell cycle than Flk-1(+) ES cells cultured under static conditions. Shear stress significantly increased the expression of the vascular endothelial cell-specific markers Flk-1, Flt-1, vascular endothelial cadherin, and PECAM-1 at both the protein level and the mRNA level, but it had no effect on expression of the mural cell marker smooth muscle alpha-actin, blood cell marker CD3, or the epithelial cell marker keratin. These findings indicate that shear stress selectively promotes the differentiation of Flk-1(+) ES cells into the endothelial cell lineage. The shear stressed Flk-1(+) ES cells formed tubelike structures in collagen gel and developed an extensive tubular network significantly faster than the static controls. Shear stress induced tyrosine phosphorylation of Flk-1 in Flk-1(+) ES cells that was blocked by a Flk-1 kinase inhibitor, SU1498, but not by a neutralizing antibody against VEGF. SU1498 also abolished the shear stress-induced proliferation and differentiation of Flk-1(+) ES cells, indicating that a ligand-independent activation of Flk-1 plays an important role in the shear stress-mediated proliferation and differentiation by Flk-1(+) ES cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources