Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 7;110(23):3587-93.
doi: 10.1161/01.CIR.0000148780.36121.47. Epub 2004 Nov 22.

Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries

Affiliations

Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries

Pamela A Lucchesi et al. Circulation. .

Abstract

Background: Epidermal growth factor receptor (EGFR) transactivation is a mediator of angiotensin II (Ang II) signaling in cultured vascular smooth muscle cells isolated from large arteries. The present study used mouse mesenteric resistance arteries (MRAs) to investigate the role of EGFR transactivation under pressure-induced myogenic tone (MT).

Methods and results: Isolated MRAs were mounted in an arteriograph and stimulated by 25 to 125 mm Hg or with Ang II and KCl. Stepwise increases in pressure resulted in MT development associated with increased EGFR phosphorylation and release of heparin-binding EGF (HB-EGF), a membrane-bound growth factor that is shed on cleavage by metalloproteinases. EGF (50 ng/mL) potentiated MT (59+/-1% to 51+/-0.6% of passive diameter at 75 mm Hg). Pretreatment with the EGFR inhibitors AG1478 (5 micromol/L) or PD153035 (1 micromol/L) significantly decreased MT. However, EGFR inhibitors had no effect on Ang II- and KCl-induced contraction. MT was potentiated by HB-EGF, 50 ng/mL, which is bound to the cell membrane and released on cleavage by metalloproteinases. Neutralizing HB-EGF antibodies or heparin treatment to sequester HB-EGF resulted in significant inhibition of pressure-induced MT. MT increased matrix metalloproteinase (MMP) 2 and MMP-9 gelatinase activity assessed by zymography, and specific MMP 2/9 inhibitors significantly decreased MT.

Conclusions: These novel findings suggest that the mechanism of pressure-induced MT involves metalloproteinases 2/9 activation with subsequent HB-EGF release and EGFR transactivation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources