Recombinant protein folding and misfolding in Escherichia coli
- PMID: 15529165
- DOI: 10.1038/nbt1029
Recombinant protein folding and misfolding in Escherichia coli
Abstract
The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.
Similar articles
-
Protein expression and refolding--a practical guide to getting the most out of inclusion bodies.Biotechnol Annu Rev. 2004;10:31-50. doi: 10.1016/S1387-2656(04)10002-1. Biotechnol Annu Rev. 2004. PMID: 15504702 Review.
-
Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli.Biotechnol Bioeng. 2004 Nov 20;88(4):426-36. doi: 10.1002/bit.20227. Biotechnol Bioeng. 2004. PMID: 15382106
-
In situ protein folding and activation in bacterial inclusion bodies.Biotechnol Bioeng. 2008 Jul 1;100(4):797-802. doi: 10.1002/bit.21797. Biotechnol Bioeng. 2008. PMID: 18351678
-
Advanced genetic strategies for recombinant protein expression in Escherichia coli.J Biotechnol. 2005 Jan 26;115(2):113-28. doi: 10.1016/j.jbiotec.2004.08.004. J Biotechnol. 2005. PMID: 15607230 Review.
-
DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli.Protein Expr Purif. 2003 Dec;32(2):221-31. doi: 10.1016/S1046-5928(03)00233-X. Protein Expr Purif. 2003. PMID: 14965767
Cited by
-
Protein purification using PDZ affinity chromatography.Curr Protoc Protein Sci. 2015 Apr 1;80:9.10.1-9.10.37. doi: 10.1002/0471140864.ps0910s80. Curr Protoc Protein Sci. 2015. PMID: 25829303 Free PMC article.
-
Novel human recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in a glyco-engineered Escherichia coli strain.Heliyon. 2024 Jun 8;10(12):e32555. doi: 10.1016/j.heliyon.2024.e32555. eCollection 2024 Jun 30. Heliyon. 2024. PMID: 38952373 Free PMC article.
-
Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.Microb Cell Fact. 2015 Jun 16;14:88. doi: 10.1186/s12934-015-0270-0. Microb Cell Fact. 2015. PMID: 26077447 Free PMC article.
-
Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells.J Ind Microbiol Biotechnol. 2013 Apr;40(3-4):257-74. doi: 10.1007/s10295-013-1235-0. Epub 2013 Feb 6. J Ind Microbiol Biotechnol. 2013. PMID: 23385853 Review.
-
Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.World J Microbiol Biotechnol. 2016 Sep;32(9):149. doi: 10.1007/s11274-016-2085-5. Epub 2016 Jul 18. World J Microbiol Biotechnol. 2016. PMID: 27430516
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous