A computational approach for ordering signal transduction pathway components from genomics and proteomics Data
- PMID: 15504238
- PMCID: PMC526379
- DOI: 10.1186/1471-2105-5-158
A computational approach for ordering signal transduction pathway components from genomics and proteomics Data
Abstract
Background: Signal transduction is one of the most important biological processes by which cells convert an external signal into a response. Novel computational approaches to mapping proteins onto signaling pathways are needed to fully take advantage of the rapid accumulation of genomic and proteomics information. However, despite their importance, research on signaling pathways reconstruction utilizing large-scale genomics and proteomics information has been limited.
Results: We have developed an approach for predicting the order of signaling pathway components, assuming all the components on the pathways are known. Our method is built on a score function that integrates protein-protein interaction data and microarray gene expression data. Compared to the individual datasets, either protein interactions or gene transcript abundance measurements, the integrated approach leads to better identification of the order of the pathway components.
Conclusions: As demonstrated in our study on the yeast MAPK signaling pathways, the integration analysis of high-throughput genomics and proteomics data can be a powerful means to infer the order of pathway components, enabling the transformation from molecular data into knowledge of cellular mechanisms.
Figures
Similar articles
-
A multivariate analysis approach to the integration of proteomic and gene expression data.Proteomics. 2007 Jun;7(13):2162-71. doi: 10.1002/pmic.200600898. Proteomics. 2007. PMID: 17549791
-
Discovering signal transduction networks using signaling domain-domain interactions.Genome Inform. 2006;17(2):35-45. Genome Inform. 2006. PMID: 17503377
-
Predicting co-complexed protein pairs using genomic and proteomic data integration.BMC Bioinformatics. 2004 Apr 16;5:38. doi: 10.1186/1471-2105-5-38. BMC Bioinformatics. 2004. PMID: 15090078 Free PMC article.
-
Data merging for integrated microarray and proteomic analysis.Brief Funct Genomic Proteomic. 2006 Dec;5(4):261-72. doi: 10.1093/bfgp/ell019. Epub 2006 May 10. Brief Funct Genomic Proteomic. 2006. PMID: 16772273 Review.
-
Bioinformatics and cellular signaling.Curr Opin Biotechnol. 2004 Feb;15(1):78-81. doi: 10.1016/j.copbio.2004.01.003. Curr Opin Biotechnol. 2004. PMID: 15102471 Review.
Cited by
-
Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-kappaB signaling-induced gene expression responses in inflammation.BMC Bioinformatics. 2010 Jun 8;11:308. doi: 10.1186/1471-2105-11-308. BMC Bioinformatics. 2010. PMID: 20529327 Free PMC article.
-
CyTRANSFINDER: a Cytoscape 3.3 plugin for three-component (TF, gene, miRNA) signal transduction pathway construction.BMC Bioinformatics. 2016 Apr 8;17:157. doi: 10.1186/s12859-016-0964-2. BMC Bioinformatics. 2016. PMID: 27059647 Free PMC article.
-
BowTieBuilder: modeling signal transduction pathways.BMC Syst Biol. 2009 Jun 30;3:67. doi: 10.1186/1752-0509-3-67. BMC Syst Biol. 2009. PMID: 19566957 Free PMC article.
-
Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis.PLoS One. 2011 Jan 31;6(1):e16388. doi: 10.1371/journal.pone.0016388. PLoS One. 2011. PMID: 21305025 Free PMC article.
-
A novel method of using Deep Belief Networks and genetic perturbation data to search for yeast signaling pathways.PLoS One. 2018 Sep 12;13(9):e0203871. doi: 10.1371/journal.pone.0203871. eCollection 2018. PLoS One. 2018. PMID: 30208101 Free PMC article.
References
-
- Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403:623–7. doi: 10.1038/35001009. - DOI - PubMed
-
- Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002;415:141–7. doi: 10.1038/415141a. - DOI - PubMed
-
- Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415:180–3. doi: 10.1038/415180a. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials