Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 10;128(1):1-7.
doi: 10.1016/j.molbrainres.2004.05.023.

Deficiency of the Mre11 DNA repair complex in Alzheimer's disease brains

Affiliations

Deficiency of the Mre11 DNA repair complex in Alzheimer's disease brains

Elizabeth Jacobsen et al. Brain Res Mol Brain Res. .

Abstract

The hallmarks of Alzheimer's disease (AD) brains are deposition of Abeta plaques, appearance of neurofibrillary tangles, and extensive loss of neuronal cells. While Abeta plaques and neurofibrillary tangles play a significant role in the pathogenic dysfunction of neurons, factors that accelerate the neurodegenerating process remain to be defined. One set of factors examined in this study is the Mre11 protein complex, composed of Rad50, Mre11 and Nbs1. This protein complex plays an essential role in cellular responses to DNA damage, such as initiating cell cycle checkpoints and repairing damaged DNA. A defect in any component of this protein complex is detrimental to cells. Recently, several groups have observed abnormal cell cycle regulation and/or accumulated DNA damage in AD neurons. These pathological alterations could conceivably be caused or exacerbated by any compromise in the Mre11 complex. In this study, we compared the levels of the Mre11 complex proteins in brain samples from AD and age-matched non-dementia controls. We show for the first time that the Mre11 complex proteins are present in neurons of the adult human cortex and cerebellum. These proteins were found substantially reduced in the neurons of AD cortex. Our finding suggests that the loss of the Mre11 complex may be associated with the pathogenesis of AD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources