Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 25:5:13.
doi: 10.1186/1471-2199-5-13.

Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent

Affiliations

Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent

Ahalya Selvaraj et al. BMC Mol Biol. .

Abstract

Background: Serum Response Factor (SRF) is a transcription factor that is required for the expression of many genes including immediate early genes, cytoskeletal genes, and muscle-specific genes. SRF is activated in response to extra-cellular signals by its association with a diverse set of co-activators in different cell types. In the case of the ubiquitously expressed immediate early genes, the two sets of SRF binding proteins that regulate its activity are the TCF family of proteins that include Elk1, SAP1 and SAP2 and the myocardin-related MKL family of proteins that include MKL1 and MKL2 (also known as MAL, MRTF-A and -B and BSAC). In response to serum or growth factors these two classes of co-activators are activated by different upstream signal transduction pathways. However, it is not clear how they differentially activate SRF target genes.

Results: In order to identify the serum-inducible SRF target genes that are specifically dependent on the MKL pathway, we have performed microarray experiments using a cell line that expresses dominant negative MKL1. This approach was used to identify SRF target genes whose activation is MKL-dependent. Twenty-eight of 150 serum-inducible genes were found to be MKL-dependent. The promoters of the serum-inducible genes were analyzed for SRF binding sites and other common regulatory elements. Putative SRF binding sites were found at a higher rate than in a mouse promoter database but were only identified in 12% of the serum-inducible promoters analyzed. Additional partial matches to the consensus SRF binding site were found at a higher than expected rate in the MKL-dependent gene promoters. The analysis for other common regulatory elements is discussed.

Conclusions: These results suggest that a subset of immediate early and SRF target genes are activated by the Rho-MKL pathway. MKL may also contribute to the induction of other SRF target genes however its role is not essential, possibly due to other activation mechanisms such as MAPK phosphorylation of TCFs.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effect of serum and TPA on gene expression in WT and DN-MKL1 cell lines. Serum starved cells were treated with new born calf serum (20%) or TPA (100 ng/ml) for 1 hour and relative mRNA levels for c-fos and jun B were measured by quantitative real-time PCR using the SYBR green method. Data are represented as the relative fold activation ± the standard deviation of the induced cells compared to the serum starved WT cells.
Figure 2
Figure 2
Hierarchical clustering of gene expression. RNA from WT and DN-MKL1 expressing cells induced with serum for the indicated times was used to probe an Affymetrix mouse chip with 14,824 non-redundant probes. dChip software was used to identify genes with significant variation across samples. 229 such genes were used for clustering analysis. Different classes of similarly regulated genes are indicated to the right and discussed in the text. The respective positions where the previously characterized MKL target genes srf, vinculin and c-fos fall are indicated by the arrows. Expression scales ranging from -3 (blue) to +3 (red) fold are indicated at the bottom of the figure.
Figure 3
Figure 3
Correlation of microarray and real-time PCR data. The expression pattern of select serum-induced MKL-dependent and -independent genes was determined by quantitative real-time PCR (right) and compared to the microarray results (left) for the indicated genes. WT or DN-MKL1 cells were induced with serum for the indicated times before isolation of RNA. The results derived from the microarray hybridizations are the averages of triplicates while the real-time PCR measurements are the averages of at least duplicates ± the standard deviation.
Figure 4
Figure 4
Known CArG boxes in serum inducible genes. The upper panel lists the positions and sequences of the known CArG boxes of the MKL-dependent or -independent genes. The bases that differ from the CArG box consensus sequence are in bold. The bottom panel shows the multilevel consensus sequence that was derived from each of these groups of CArG boxes. Below the consensus sequence is the simplified position-specific probability matrix that specifies the probability of each possible base appearing at each position in an occurrence of the motif multiplied by 10. 'a' denotes a probability that is almost or equal to 1. The consensus sequence is the best match to the CArG boxes oriented on either strand.

Similar articles

Cited by

References

    1. Treisman R. The SRE: a growth factor responsive transcriptional regulator. Semin Cancer Biol. 1990;1:47–58. - PubMed
    1. Gilman MZ, Wilson RN, Weinberg RA. Multiple protein-binding sites in the 5'-flanking region regulate c-fos expression. Mol Cell Biol. 1986;6:4305–4316. - PMC - PubMed
    1. Treisman R. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell. 1986;46:567–574. doi: 10.1016/0092-8674(86)90882-2. - DOI - PubMed
    1. Prywes R, Roeder RG. Inducible binding of a factor to the c-fos enhancer. Cell. 1986;47:777–784. doi: 10.1016/0092-8674(86)90520-9. - DOI - PubMed
    1. Gauthier-Rouviere C, Cavadore JC, Blanchard JM, Lamb NJ, Fernandez A. p67SRF is a constitutive nuclear protein implicated in the modulation of genes required throughout the G1 period. Cell Regul. 1991;2:575–588. - PMC - PubMed

Publication types

MeSH terms