Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug 1;64(15):5148-53.
doi: 10.1158/0008-5472.CAN-04-0442.

Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice

Affiliations
Comparative Study

Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice

Ramune Reliene et al. Cancer Res. .

Abstract

Ataxia telangiectasia (AT) is a hereditary human disorder resulting in a wide variety of clinical manifestations, including progressive neurodegeneration, immunodeficiency, and high incidence of lymphoid tumors. Cells from patients with AT show genetic instability, hypersensitivity to radiation, and a continuous state of oxidative stress. Oxidative stress and genetic instability, including DNA deletions, are involved in carcinogenesis. We examined the effect of dietary supplementation with the thiol-containing antioxidant N-acetyl-l-cysteine (NAC) on levels of oxidative DNA damage and the frequency of DNA deletions in Atm-deficient (AT-mutated) mice. We confirmed that Atm-deficient mice display an increased frequency of DNA deletions (Bishop et al., Cancer Res 2000;60:395). Furthermore, we found that Atm-deficient mice have significantly increased levels of 8-OH deoxyguanosine, an indication of oxidative DNA damage. Dietary supplementation with NAC significantly reduced 8-OH deoxyguanosine level and the frequency of DNA deletions in Atm-deficient mice. These levels were similar to the levels in wild-type mice. Our findings demonstrate that NAC counteracts genetic instability and suggest that genetic instability may be a consequence of oxidative stress in Atm-deficient mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms