Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 23;23(44):7330-44.
doi: 10.1038/sj.onc.1207995.

Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase

Affiliations

Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase

Harikrishna Nakshatri et al. Oncogene. .

Abstract

The antitumor activity of the sesquiterpene lactone parthenolide, an active ingredient of medicinal plants, is believed to be due to the inhibition of DNA binding of transcription factors NF-kappaB and STAT-3, reduction in MAP kinase activity and the generation of reactive oxygen. In this report, we show that parthenolide activates c-Jun N-terminal kinase (JNK), which is independent of inhibition of NF-kappaB DNA binding and generation of reactive oxygen species. Parthenolide reversed resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Cancer cells treated with a combination of TRAIL and parthenolide underwent massive typical apoptosis and atypical apoptosis involving the loss of plasma membrane integrity. JNK activity is necessary for the parthenolide-induced sensitization to TRAIL because a dominant-negative JNK or the JNK inhibitor SP600125 reduced TRAIL plus parthenolide-induced apoptosis. Parthenolide induced phosphorylation of Bid and increased TRAIL-dependent cleavage of Bid without affecting caspase 8 activities. Cytochrome c but not Smac/DIABLO was released from the mitochondria in cells treated with parthenolide alone. Parthenolide through JNK increased the TRAIL-mediated degradation of the antiapoptotic protein X-linked inhibitor of apoptosis (XIAP). Enhanced XIAP cleavage correlated with increased and prolonged caspase 3 activity and PARP cleavage, suggesting that the sensitization to TRAIL involves 'feed forward' activation of caspase 3. These results identify a new antitumor activity of parthenolide, which can be exploited to reverse resistance of cancer cells to TRAIL, particularly those with elevated XIAP levels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms