Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;66(2):312-21.
doi: 10.1124/mol.104.000398.

Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers

Affiliations

Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers

Mohammed A Ayoub et al. Mol Pharmacol. 2004 Aug.

Erratum in

  • Mol Pharmacol. 2004 Sep;66(3):771

Abstract

Heterodimerization has been documented for several members of the G protein-coupled receptor (GPCR) superfamily, including the closely related MT(1) and MT(2) melatonin receptors. However, the relative abundance of hetero-versus homodimers and the specific properties, which can be attributed to each form, are difficult to determine. Using a bioluminescence resonance energy transfer (BRET) donor saturation assay, we show that half-maximal MT(1)/MT(2) heterodimer formation is reached for expression levels as low as approximately 4000 receptors per cell. The relative propensity of MT(1) homodimer and MT(1)/MT(2) heterodimer formation are similar, whereas that for the MT(2) homodimer formation is 3- to 4-fold lower. These data indicate that both the relative expression level of each receptor isoform and the affinities between monomers may determine the actual proportion of homo- and heterodimers. The specific interaction of ligands with the MT(1)/MT(2) heterodimer was studied using a BRET-based assay as a readout for the conformational changes of the heterodimer. An MT(1)/MT(2) heterodimer-specific profile and ligands selective for the MT(1)/MT(2) heterodimer compared with the MT(2) homodimer could be identified. Classic radioligand binding and BRET studies suggest that heterodimers contain two functional ligand binding sites that maintain their respective selectivity for MT(1) and MT(2) ligands. Occupation of either binding site is sufficient to induce a conformational change within the heterodimer. Taken together, these results show that the probability of GPCR heterodimer formation may be equal to or even higher than that of the corresponding homodimers and that specific properties of heterodimers can be revealed using a BRET-based ligand/receptor interaction assay.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources