Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 1;117(Pt 15):3119-27.
doi: 10.1242/jcs.01179. Epub 2004 Jun 9.

Synaptotagmin V and IX isoforms control Ca2+ -dependent insulin exocytosis

Affiliations

Synaptotagmin V and IX isoforms control Ca2+ -dependent insulin exocytosis

Mariella Iezzi et al. J Cell Sci. .

Abstract

Synaptotagmin (Syt) is involved in Ca2+ -regulated secretion and has been suggested to serve as a general Ca2+ sensor on the membrane of secretory vesicles in neuronal cells. Insulin exocytosis from the pancreatic beta-cell is an example of a Ca2+ -dependent secretory process. Previous studies have yielded conflicting results as to which Syt isoform is present on the secretory granules in the native beta-cell. Here we show by western blotting and RT-PCR analysis, the presence of both Syt V and Syt IX in rat pancreatic islets and in the clonal beta-cell line INS-1E. The subcellular distribution of the two Syt isoforms was assessed by confocal microscopy and by sedimentation in a continuous sucrose density gradient in INS-1E cells. These experiments show that both proteins colocalize with insulin-containing secretory granules but are absent from synaptic-like microvesicles. Further immunofluorescence studies performed in primary pancreatic endocrine cells revealed that Syt V is present in glucagon-secreting alpha-cells, whereas Syt IX is associated with insulin granules in beta-cells. Transient overexpression of Syt V and Syt IX did not alter exocytosis in INS-1E cells. Finally, reduction of the expression of both Syt isoforms by RNA interference did not change basal secretion. Remarkably, hormone release in response to glucose was selectively and strongly reduced, indicating that Syt V and Syt IX are directly involved in the Ca2+ -dependent stimulation of exocytosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources