Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;45(4):537-44.
doi: 10.1016/j.neuint.2003.11.007.

Interactions between glutamate transporters and metabotropic glutamate receptors at excitatory synapses in the cerebellar cortex

Affiliations

Interactions between glutamate transporters and metabotropic glutamate receptors at excitatory synapses in the cerebellar cortex

Thomas S Otis et al. Neurochem Int. 2004 Sep.

Abstract

Five glutamate transporter genes have been identified; two of these (EAAT3 and EAAT4) are expressed in neurons and are predominantly confined to the membranes of cell bodies and dendrites. At an ultrastructural level, glutamate transporters have been shown to surround excitatory synapses in hippocampus and cerebellum [J. Neurosci. 18 (1998) 3606; J. Comp. Neurol. 418 (2000) 255]. This pattern of localization overlaps the well-described perisynaptic distribution of Group I metabotropic glutamate receptors or mGluRs [Neuron 11 (1993) 771; J. Chem. Neuroanat. 13 (1997) 77]. Both of the principal excitatory synaptic inputs to cerebellar Purkinje neurons, the parallel fiber (PF) and climbing fiber (CF) synapses, express mGluR-dependent forms of synaptic plasticity [Nat. Neurosci. 4 (2001) 467]. Prompted by the colocalization of postsynaptic glutamate transporters and mGluRs, we have examined whether glutamate uptake limits mGluR-mediated signals and mGluR-dependent forms of plasticity at PF and CF synapses in cerebellar slices. We find that, at PF and, surprisingly also at CF synapses, mGluR activation generates a slow synaptic current and triggers intracellular calcium release. At both PF and CF synapses, mGluR responses are strongly limited by glutamate transporters under resting conditions and are facilitated by short trains of stimuli. Nearly every Purkinje neuron expresses an mGluR-mediated synaptic current upon inhibition of glutamate transport. Global applications of glutamate achieved by photolysis of chemically caged glutamate yield similar results and argue that the colocalized transporters can effectively limit glutamate access to the mGluRs even in the face of such a large amount of transmitter. We hypothesize that neuronal glutamate transporters and Group I mGluRs located in the perisynaptic space interact to sense and then regulate the amount of glutamate escaping excitatory synapses. This hypothesis is currently being tested using electrophysiological methods and the introduction of optically tagged glutamate transporter proteins. In the brain, synaptic signals are terminated mainly by neurotransmitter transporters. Families of genes encoding transporters for the major neurotransmitters (dopamine, GABA, glutamate, glycine, norepinephrine and 5-HT) have been identified. Although transporters serve as targets for important classes of therapeutic drugs (e.g. selective serotonin reuptake inhibitors) and drugs of abuse (amphetamine, cocaine), little is known about how they operate at a molecular level or contribute to synaptic transmission.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources