Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;92(4):2615-21.
doi: 10.1152/jn.00327.2004. Epub 2004 May 12.

Fast inhibition alters first spike timing in auditory brainstem neurons

Affiliations
Free article

Fast inhibition alters first spike timing in auditory brainstem neurons

Antonio G Paolini et al. J Neurophysiol. 2004 Oct.
Free article

Abstract

Within the first processing site of the central auditory pathway, inhibitory neurons (D stellate cells) broadly tuned to tonal frequency project on narrowly tuned, excitatory output neurons (T stellate cells). The latter is thought to provide a topographic representation of sound spectrum, whereas the former is thought to provide lateral inhibition that improves spectral contrast, particularly in noise. In response to pure tones, the overall discharge rate in T stellate cells is unlikely to be suppressed dramatically by D stellate cells because they respond primarily to stimulus onset and provide fast, short-duration inhibition. In vivo intracellular recordings from the ventral cochlear nucleus (VCN) showed that, when tones were presented above or below the characteristic frequency (CF) of a T stellate neuron, they were inhibited during depolarization. This resulted in a delay in the initial action potential produced by T stellate cells. This ability of fast inhibition to alter the first spike timing of a T stellate neuron was confirmed by electrically activating the D stellate cell pathway that arises in the contralateral cochlear nucleus. Delay was also induced when two tones were presented: one at CF and one outside the frequency response area of the T stellate neuron. These findings suggest that the traditional view of lateral inhibition within the VCN should incorporate delay as one of its principle outcomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources