Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;45(4):490-5.
doi: 10.1093/pcp/pch048.

Simple RNAi vectors for stable and transient suppression of gene function in rice

Affiliations

Simple RNAi vectors for stable and transient suppression of gene function in rice

Daisuke Miki et al. Plant Cell Physiol. 2004 Apr.

Abstract

Since the recent sequencing of the rice genome, the functional identification of rice genes has become increasingly important. Various tagged lines have been generated; however, the number of tagged genes available is not sufficient for extensive study of gene function. To help identify the functions of genes in rice, we developed a Gateway vector, pANDA, for RNA interference of rice genes. This vector can be used for Agrobacterium transformation of rice and allows easy and fast construction of efficient RNAi vectors. In the construct, hairpin RNA derived from a given gene is transcribed from a strong maize ubiquitin promoter, and an intron is placed 5' upstream of inverted repeats to enhance RNA expression. Analysis of rice genes using this vector showed that suppression of mRNA expression was observed in more than 90% of transgenic plants examined, and short interfering RNA indicative of RNA silencing was detected in each silenced plant. A similar vector, pANDA-mini, was also developed for direct transfer into leaf cells or protoplasts. This vector can be used for transient suppression of gene function in rice. These vectors should help identify the functions of rice genes whose tagged mutants are not available at present and complement existing methods for functional genomics of rice.

PubMed Disclaimer

Similar articles

Cited by

Publication types