Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed
- PMID: 15084258
- DOI: 10.1016/s0092-8674(04)00299-5
Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed
Abstract
Trigger factor and DnaK protect nascent protein chains from misfolding and aggregation in the E. coli cytosol, but how these chaperones affect the mechanism of de novo protein folding is not yet understood. Upon expression under chaperone-depleted conditions, multidomain proteins such as bacterial beta-galactosidase (beta-gal) and eukaryotic luciferase fold by a rapid but inefficient default pathway, tightly coupled to translation. Trigger factor and DnaK improve the folding yield of these proteins but markedly delay the folding process both in vivo and in vitro. This effect requires the dynamic recruitment of additional trigger factor molecules to translating ribosomes. While beta-galactosidase uses this chaperone mechanism effectively, luciferase folding in E. coli remains inefficient. The efficient cotranslational domain folding of luciferase observed in the eukaryotic system is not compatible with the bacterial chaperone system. These findings suggest important differences in the coupling of translation and folding between bacterial and eukaryotic cells.
Similar articles
-
Mechanism of chaperone coordination during cotranslational protein folding in bacteria.Mol Cell. 2024 Jul 11;84(13):2455-2471.e8. doi: 10.1016/j.molcel.2024.06.002. Epub 2024 Jun 21. Mol Cell. 2024. PMID: 38908370
-
Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding.Mol Cell. 2012 Oct 12;48(1):63-74. doi: 10.1016/j.molcel.2012.07.018. Epub 2012 Aug 23. Mol Cell. 2012. PMID: 22921937
-
Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins.Biol Chem. 2001 Aug;382(8):1235-43. doi: 10.1515/BC.2001.154. Biol Chem. 2001. PMID: 11592405
-
Structure and function of the molecular chaperone Trigger Factor.Biochim Biophys Acta. 2010 Jun;1803(6):650-61. doi: 10.1016/j.bbamcr.2010.01.017. Epub 2010 Feb 2. Biochim Biophys Acta. 2010. PMID: 20132842 Review.
-
Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding?Curr Opin Microbiol. 2003 Apr;6(2):157-62. doi: 10.1016/s1369-5274(03)00030-4. Curr Opin Microbiol. 2003. PMID: 12732306 Review.
Cited by
-
Identical RNA-protein interactions in vivo and in vitro and a scheme of folding the newly synthesized proteins by ribosomes.J Biol Chem. 2012 Oct 26;287(44):37508-21. doi: 10.1074/jbc.M112.396127. Epub 2012 Aug 29. J Biol Chem. 2012. PMID: 22932895 Free PMC article.
-
Selection of protective epitopes for Brucella melitensis by DNA vaccination.Infect Immun. 2005 Nov;73(11):7297-303. doi: 10.1128/IAI.73.11.7297-7303.2005. Infect Immun. 2005. PMID: 16239526 Free PMC article.
-
The Role of Plastidic Trigger Factor Serving Protein Biogenesis in Green Algae and Land Plants.Plant Physiol. 2019 Mar;179(3):1093-1110. doi: 10.1104/pp.18.01252. Epub 2019 Jan 16. Plant Physiol. 2019. PMID: 30651302 Free PMC article.
-
Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding.Int J Mol Sci. 2022 Feb 24;23(5):2485. doi: 10.3390/ijms23052485. Int J Mol Sci. 2022. PMID: 35269628 Free PMC article. Review.
-
The Ribosome Cooperates with a Chaperone to Guide Multi-domain Protein Folding.Mol Cell. 2019 Apr 18;74(2):310-319.e7. doi: 10.1016/j.molcel.2019.01.043. Epub 2019 Mar 6. Mol Cell. 2019. PMID: 30852061 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources