Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain
- PMID: 15062101
- DOI: 10.1016/j.cub.2004.03.039
Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain
Abstract
L-glutamate is both the major brain excitatory neurotransmitter and a potent neurotoxin in mammals. Glutamate excitotoxicity is partly responsible for cerebral traumas evoked by ischemia and has been implicated in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). In contrast, very little is known about the function or potential toxicity of glutamate in the insect brain. Here, we show that decreasing glutamate buffering capacity is neurotoxic in Drosophila. We found that the only Drosophila high-affinity glutamate transporter, dEAAT1, is selectively addressed to glial extensions that project ubiquitously through the neuropil close to synaptic areas. Inactivation of dEAAT1 by RNA interference led to characteristic behavior deficits that were significantly rescued by expression of the human glutamate transporter hEAAT2 or the administration in food of riluzole, an anti-excitotoxic agent used in the clinic for human ALS patients. Signs of oxidative stress included hypersensitivity to the free radical generator paraquat and rescue by the antioxidant melatonin. Inactivation of dEAAT1 also resulted in shortened lifespan and marked brain neuropil degeneration characterized by widespread microvacuolization and swollen mitochondria. This suggests that the dEAAT1-deficient fly provides a powerful genetic model system for molecular analysis of glutamate-mediated neurodegeneration.
Similar articles
-
Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction.J Neurobiol. 2006 Sep 1;66(10):1061-74. doi: 10.1002/neu.20270. J Neurobiol. 2006. PMID: 16838372
-
Excitatory amino acid transporter expression by astrocytes is neuroprotective against microglial excitotoxicity.Brain Res. 2008 May 19;1210:11-9. doi: 10.1016/j.brainres.2008.03.012. Epub 2008 Mar 20. Brain Res. 2008. PMID: 18410911
-
Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila.Hum Mol Genet. 2005 Mar 1;14(5):713-24. doi: 10.1093/hmg/ddi067. Epub 2005 Jan 27. Hum Mol Genet. 2005. PMID: 15677486
-
Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury.Neurochem Int. 2006 Apr;48(5):394-403. doi: 10.1016/j.neuint.2005.12.001. Epub 2006 Feb 13. Neurochem Int. 2006. PMID: 16473439 Review.
-
Excitotoxicity and amyotrophic lateral sclerosis.Neurodegener Dis. 2005;2(3-4):147-59. doi: 10.1159/000089620. Neurodegener Dis. 2005. PMID: 16909020 Review.
Cited by
-
Neurodegenerative mutants in Drosophila: a means to identify genes and mechanisms involved in human diseases?Invert Neurosci. 2005 Nov;5(3-4):97-109. doi: 10.1007/s10158-005-0005-8. Epub 2005 Oct 24. Invert Neurosci. 2005. PMID: 16187075 Review.
-
Evolution of Neuroglia.Adv Exp Med Biol. 2019;1175:15-44. doi: 10.1007/978-981-13-9913-8_2. Adv Exp Med Biol. 2019. PMID: 31583583 Free PMC article. Review.
-
Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction.J Neurosci. 2014 Feb 19;34(8):2910-20. doi: 10.1523/JNEUROSCI.3714-13.2014. J Neurosci. 2014. PMID: 24553932 Free PMC article.
-
Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila.Neural Dev. 2010 Apr 6;5:10. doi: 10.1186/1749-8104-5-10. Neural Dev. 2010. PMID: 20370889 Free PMC article.
-
Glial cell modulation of circadian rhythms.Glia. 2011 Sep;59(9):1341-50. doi: 10.1002/glia.21097. Epub 2010 Dec 1. Glia. 2011. PMID: 21732426 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous