Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;310(1):215-22.
doi: 10.1124/jpet.103.064824. Epub 2004 Mar 10.

Endogenous regulator of G protein signaling proteins suppress Galphao-dependent, mu-opioid agonist-mediated adenylyl cyclase supersensitization

Affiliations

Endogenous regulator of G protein signaling proteins suppress Galphao-dependent, mu-opioid agonist-mediated adenylyl cyclase supersensitization

Mary J Clark et al. J Pharmacol Exp Ther. 2004 Jul.

Abstract

Chronic mu-opioid agonist treatment leads to dependence with withdrawal on removal of agonist. At the cellular level withdrawal is accompanied by a supersensitization of adenylyl cyclase, an effect that requires inhibitory Galpha proteins. Inhibitory Galpha protein action is modulated by regulator of G protein signaling (RGS) proteins that act as GTPase activating proteins and reduce the lifetime of Galpha-GTP. In this article, we use C6 glioma cells expressing the rat mu-opioid receptor (C6mu) to examine the hypothesis that Galphao alone can mediate mu-opioid agonist induced adenylyl cyclase supersensitivity and that endogenous RGS proteins serve to limit the extent of this supersensitization. C6mu cells were stably transfected with pertussis toxin (PTX)-insensitive Galphao that was either sensitive or insensitive to endogenous RGS proteins. Cells were treated with PTX to uncouple endogenous Galpha proteins followed by exposure to the mu-opioid agonists [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin or morphine. Supersensitization was observed in cells expressing wild-type Galpha, but this was lost on PTX treatment. In cells expressing PTX-insensitive Galphao supersensitization was recovered, confirming that Galphao alone can support supersensitization. In cells expressing the RGS-insensitive mutant Galphao, there was a greater degree of supersensitization and the concentration of micro-agonist needed to achieve half-maximal supersensitization was reduced by 10-fold. The amount of supersensitization seen did not directly relate to the degree of acute inhibition of adenylyl cyclase. These results demonstrate a role for Galphao in adenylyl cyclase supersensitization after mu-agonist exposure and show that this action is modulated by endogenous RGS proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources