Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima
- PMID: 14991425
- DOI: 10.1007/s00792-004-0379-2
Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima
Abstract
The thermal stress response of the hyperthermophilic bacterium Thermotoga maritima was characterized using a 407-open reading frame-targeted cDNA microarray. Transient gene expression was followed for 90 min, following a shift from 80 degrees C to 90 degrees C. While some aspects of mesophilic heat-shock response were conserved in T. maritima, genome content suggested differentiating features that were borne out by transcriptional analysis. Early induction of predicted heat-shock operons hrcA-grpE-dnaJ (TM0851-TM0850-TM0849), groES-groEL (TM0505-TM0506), and dnaK-sHSP (TM0373-TM0374) was consistent with conserved CIRCE elements upstream of hrcA and groES. Induction of the T. maritima rpoE/ sigW and rpoD/ sigA homologs suggests a mechanism for global heat-shock response in the absence of an identifiable ortholog to a major heat-shock sigma factor. In contrast to heat-shock response in Escherichia coli, the majority of genes encoding ATP-dependent proteases were downregulated, including clpP (TM0695), clpQ (TM0521), clpY (TM0522), lonA (TM1633), and lonB (TM1869). Notably, T. maritima showed indications of a late heat-shock response with the induction of a marR homolog (TM0816), several other putative transcriptional regulators (TM1023, TM1069), and two alpha-glucosidases (TM0434 and TM1068). Taken together, the results reported here indicate that, while T. maritima shares core elements of the bacterial heat-shock response with mesophiles, the thermal stress regulatory strategies of this organism differ significantly. However, it remains to be elucidated whether these differences are related to thermophilicity or phylogenetic placement.
Copyright 2004 Springer-Verlag
Similar articles
-
Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima.Appl Environ Microbiol. 2004 Oct;70(10):6098-112. doi: 10.1128/AEM.70.10.6098-6112.2004. Appl Environ Microbiol. 2004. PMID: 15466556 Free PMC article.
-
Characterization of stress-responsive genes, hrcA-grpE-dnaK-dnaJ, from phytopathogenic Xanthomonas campestris.Arch Microbiol. 2001 Jul;176(1-2):121-8. doi: 10.1007/s002030100302. Arch Microbiol. 2001. PMID: 11479711
-
Heat-shock sigma factor RpoH from Geobacter sulfurreducens.Microbiology (Reading). 2007 Mar;153(Pt 3):838-846. doi: 10.1099/mic.0.2006/000638-0. Microbiology (Reading). 2007. PMID: 17322204
-
Expression of heat shock genes in Clostridium acetobutylicum.FEMS Microbiol Rev. 1995 Oct;17(3):341-8. doi: 10.1111/j.1574-6976.1995.tb00217.x. FEMS Microbiol Rev. 1995. PMID: 7576772 Review.
-
The heat shock response of Escherichia coli.Int J Food Microbiol. 2000 Apr 10;55(1-3):3-9. doi: 10.1016/s0168-1605(00)00206-3. Int J Food Microbiol. 2000. PMID: 10791710 Review.
Cited by
-
Advances in stress-tolerance elements for microbial cell factories.Synth Syst Biotechnol. 2024 Jun 28;9(4):793-808. doi: 10.1016/j.synbio.2024.06.008. eCollection 2024 Dec. Synth Syst Biotechnol. 2024. PMID: 39072145 Free PMC article. Review.
-
Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach.BMC Genomics. 2008 Nov 18;9:547. doi: 10.1186/1471-2164-9-547. BMC Genomics. 2008. PMID: 19019206 Free PMC article.
-
Combined transcriptomics-metabolomics profiling of the heat shock response in the hyperthermophilic archaeon Pyrococcus furiosus.Extremophiles. 2019 Jan;23(1):101-118. doi: 10.1007/s00792-018-1065-0. Epub 2018 Nov 14. Extremophiles. 2019. PMID: 30430272
-
Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation.Plant Physiol. 2006 Apr;140(4):1297-305. doi: 10.1104/pp.105.074898. Epub 2006 Feb 24. Plant Physiol. 2006. PMID: 16500991 Free PMC article.
-
The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture.Appl Environ Microbiol. 2006 Jan;72(1):811-8. doi: 10.1128/AEM.72.1.811-818.2006. Appl Environ Microbiol. 2006. PMID: 16391122 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials