Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Feb:53 Suppl 1:S110-8.
doi: 10.2337/diabetes.53.2007.s110.

Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes

Affiliations
Review

Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes

Katherine Green et al. Diabetes. 2004 Feb.

Abstract

Hyperglycemia causes many of the pathological consequences of both type 1 and type 2 diabetes. Much of this damage is suggested to be a consequence of elevated production of reactive oxygen species by the mitochondrial respiratory chain during hyperglycemia. Mitochondrial radical production associated with hyperglycemia will also disrupt glucose-stimulated insulin secretion by pancreatic beta-cells, because pancreatic beta-cells are particularly susceptible to oxidative damage. Therefore, mitochondrial radical production in response to hyperglycemia contributes to both the progression and pathological complications of diabetes. Consequently, strategies to decrease mitochondrial radical production and oxidative damage may have therapeutic potential. This could be achieved by the use of antioxidants or by decreasing the mitochondrial membrane potential. Here, we outline the background to these strategies and discuss how antioxidants targeted to mitochondria, or selective mitochondrial uncoupling, may be potential therapies for diabetes.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources