Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;309(1):432-8.
doi: 10.1124/jpet.103.060061. Epub 2004 Jan 12.

Novel 2',6'-dimethyl-L-tyrosine-containing pyrazinone opioid mimetic mu-agonists with potent antinociceptive activity in mice

Affiliations

Novel 2',6'-dimethyl-L-tyrosine-containing pyrazinone opioid mimetic mu-agonists with potent antinociceptive activity in mice

Yunden Jinsmaa et al. J Pharmacol Exp Ther. 2004 Apr.

Abstract

Novel bioactive opioid mimetic agonists containing 2',6'-dimethyl-l-tyrosine (Dmt) and a pyrazinone ring interact with mu- and delta-opioid receptors. Compound 1 [3-(4' -Dmt-aminobutyl)-6-(3'-Dmt-aminopropyl)-5-methyl-2(1H)pyrazinone] exhibited high mu-opioid receptor affinity and selectivity (K(i)mu = 0.021 nM and K(i)delta/K(i)mu = 1,519, respectively), and agonist activity on guinea pig ileum (IC(50) = 1.7 nM) with weaker delta-bioactivity on mouse vas deferens (IC(50) = 25.8 nM). Other compounds (2-4) had mu-opioid receptor affinities and selectivities 2- to 5-fold and 4- to 7-fold less than 1, respectively. Intracerebroventricular administration of 1 in mice exhibited potent naloxone reversible antinociception (65 to 71 times greater than morphine) in both tail-flick (TF) and hot-plate (HP) tests. Distinct opioid antagonists had differential effects on antinociception: naltrindole (delta-antagonist) partially blocked antinociception in the TF, but it was ineffective in the HP test, whereas beta-funaltrexamine (irreversible antagonist, mu(1)/mu(2)-subtypes) but not naloxonazine (mu(1)-subtype) inhibited TF test antinociception, yet both blocked antinociception in the HP test. Our data indicated that 1 acted through mu- and delta-opioid receptors to produce spinal antinociception, although primarily through the mu(2)-receptor subtype; however, the mu(1)-receptor subtype dominates supraspinally. Subcutaneous and oral administration indicated that 1 crossed gastrointestinal and blood-brain barriers to produce central nervous system-mediated antinociception. Furthermore, daily s.c. dosing of mice with 1 for 1 week developed tolerance in a similar manner to that of morphine in TF and HP tests, implicating that 1 also acts through a similar mechanism analogous to morphine at mu-opioid receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types