Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Nov-Dec;10(6 Pt 2):664-75.
doi: 10.1159/000074077.

SARS virus: the beginning of the unraveling of a new coronavirus

Affiliations
Review

SARS virus: the beginning of the unraveling of a new coronavirus

Michael M C Lai. J Biomed Sci. 2003 Nov-Dec.

Abstract

Severe acute respiratory syndrome (SARS) virus caused a severe outbreak in several regions of the world in 2003. The virus is a novel coronavirus, which may have an origin in wild animals such as civet cats in southern China. Its genome structure, gene expression pattern and protein profiles are similar to those of other coronaviruses. However, distinct patterns of several open reading frames in the SARS virus genome may contribute to its severe virulence. The potential mutability of the coronavirus genome may pose problems in the control of future SARS outbreaks. The mechanism of SARS pathogenesis may involve both direct viral cytocidal effects on the target cells and immune-mediated mechanisms. The life cycle of the SARS virus is largely unknown; however, based on the analogy with other coronaviruses, several potential targets for antiviral development are identified. Vaccines offer an important preventive measure for possible future recurrences of SARS, but the prospect for their development is still unknown because of the uncertainty regarding the role of immune responses in SARS virus pathogenesis. The comparative studies of other coronaviruses offer insights into the understanding of SARS virus.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abbott A. Pet theory comes to the fore in fight against SARS. Nature. 2003;423:576–576. - PMC - PubMed
    1. Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J, Enjuanes L. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA. 2000;97:5516–5521. - PMC - PubMed
    1. An S, Chen C-J, Yu X, Leibowitz JL, Makino S. Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J Virol. 1999;73:7853–7859. - PMC - PubMed
    1. Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J. 2002;21:3213–3224. - PMC - PubMed
    1. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300:1763–1767. doi: 10.1126/science.1085658. - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources