Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 2;279(1):19-25.
doi: 10.1074/jbc.M311201200. Epub 2003 Oct 23.

TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption

Affiliations
Free article

TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption

Thomas Voets et al. J Biol Chem. .
Free article

Abstract

Mg2+ is an essential ion involved in a multitude of physiological and biochemical processes and a major constituent of bone tissue. Mg2+ homeostasis in mammals depends on the equilibrium between intestinal Mg2+ absorption and renal Mg2+ excretion, but little is known about the molecular nature of the proteins involved in the transepithelial transport of Mg2+ in these organs. Recently, it was shown that patients with mutations in TRPM6, a member of the transient receptor potential family of cation channels, suffer from hypomagnesemia with secondary hypocalcemia (HSH) as a result of impaired renal and/or intestinal Mg2+ handling. Here, we show that TRPM6 is specifically localized along the apical membrane of the renal distal convoluted tubule and the brush-border membrane of the small intestine, epithelia particularly associated with active Mg2+ (re)absorption. In kidney, parvalbumin and calbindin-D28K, two divalent-binding proteins, are co-expressed with TRPM6 and might function as intracellular Mg2+ buffers in the distal convoluted tubule. Heterologous expression of wild-type TRPM6 but not TRPM6 mutants identified in HSH patients induces a Mg2+- and Ca2+-permeable cation channel tightly regulated by intracellular Mg2+ levels. The TRPM6-induced channel displays strong outward rectification, has a 5-fold higher affinity for Mg2+ than for Ca2+, and is blocked in a voltage-dependent manner by ruthenium red. Our data indicate that TRPM6 comprises all or part of the apical Mg2+ channel of Mg2+-absorbing epithelia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data