Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 15;12(24):3295-305.
doi: 10.1093/hmg/ddg350. Epub 2003 Oct 21.

Phosphorylation influences the translation state of FMRP-associated polyribosomes

Affiliations

Phosphorylation influences the translation state of FMRP-associated polyribosomes

Stephanie Ceman et al. Hum Mol Genet. .

Abstract

Fragile X mental retardation protein, FMRP, is absent in patients with fragile X syndrome, a common form of mental retardation. FMRP is a nucleocytoplasmic RNA binding protein that is primarily associated with polyribosomes. FMRP is believed to be a translational repressor and may regulate the translation of certain mRNAs at the base of dendritic spines in neurons. However, little is known about the regulation of FMRP. Using mass spectrometry and site-directed mutagenesis, we show that FMRP is phosphorylated between residues 483 and 521, N-terminal to the RGG box, both in murine brain and in cultured cells. Primary phosphorylation occurs on the highly conserved serine 499, which triggers hierarchical phosphorylation of nearby serines. FMRP is phosphorylated within 2-4 h of synthesis, however, phosphorylation has no effect on the half-life of the protein. In contrast to the Drosophila ortholog dFxr, the phosphorylation status of mammalian FMRP does not influence its association with specific mRNAs in vivo. However, we find unphosphorylated FMRP associated with actively translating polyribosomes while a fraction of phosphorylated FMRP is associated with apparently stalled polyribosomes. Our data suggest that the phosphorylation may regulate FMRP and that the release of FMRP-induced translational suppression may involve a dephosphorylation signal.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources