Putative caveolin-binding sites in SARS-CoV proteins
- PMID: 14531951
Putative caveolin-binding sites in SARS-CoV proteins
Abstract
Aim: To obtain the information of protein-protein interaction between the SARS-CoV proteins and caveolin-1, identify the possible caveolin-binding sites in SARS-CoV proteins.
Methods: On the basis of three related caveolin-binding motifs, amino acid motif search was employed to predict the possible caveolin-1 related interaction domains in the SARS-CoV proteins. The molecular modeling and docking simulation methods were used to confirm the interaction between caveolin-1 and SARS-CoV proteins.
Results: Thirty six caveolin-binding motifs in the SARS-CoV proteins have been mapped out using bioinformatics analysis tools. Molecular modeling and simulation have confirmed 8 caveolin-binding sites. These caveolin-binding sites located in replicase 1AB, spike protein, orf3 protein, and M protein, respectively.
Conclusion: Caveolin-1 may serve as a possible receptor of the SARS-CoV proteins, which may be associated with the SARS-CoV infection, replication, assembly, and budding.
Similar articles
-
Putative hAPN receptor binding sites in SARS_CoV spike protein.Acta Pharmacol Sin. 2003 Jun;24(6):481-8. Acta Pharmacol Sin. 2003. PMID: 12791172
-
Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein.Virus Res. 2020 Sep;286:198058. doi: 10.1016/j.virusres.2020.198058. Epub 2020 Jun 9. Virus Res. 2020. PMID: 32531235 Free PMC article.
-
A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms.J Virol. 2010 Sep;84(17):8753-64. doi: 10.1128/JVI.00554-10. Epub 2010 Jun 23. J Virol. 2010. PMID: 20573835 Free PMC article.
-
An overall picture of SARS coronavirus (SARS-CoV) genome-encoded major proteins: structures, functions and drug development.Curr Pharm Des. 2006;12(35):4539-53. doi: 10.2174/138161206779010459. Curr Pharm Des. 2006. PMID: 17168760 Review.
-
Drug design targeting the main protease, the Achilles' heel of coronaviruses.Curr Pharm Des. 2006;12(35):4573-90. doi: 10.2174/138161206779010369. Curr Pharm Des. 2006. PMID: 17168763 Review.
Cited by
-
Multi-omic network signatures of disease.Front Genet. 2014 Jan 7;4:309. doi: 10.3389/fgene.2013.00309. eCollection 2014 Jan 7. Front Genet. 2014. PMID: 24432028 Free PMC article.
-
Factors preventing materno-fetal transmission of SARS-CoV-2.Placenta. 2020 Aug;97:1-5. doi: 10.1016/j.placenta.2020.05.012. Epub 2020 May 29. Placenta. 2020. PMID: 32501218 Free PMC article. Review.
-
Evidence of mitochondria origin of SARS-CoV-2 double-membrane vesicles: a review.F1000Res. 2024 Jul 10;10:1009. doi: 10.12688/f1000research.73170.2. eCollection 2021. F1000Res. 2024. PMID: 38827572 Free PMC article. Review.
-
The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production.Biochim Biophys Acta. 2014 Apr;1838(4):1088-95. doi: 10.1016/j.bbamem.2013.07.025. Epub 2013 Jul 29. Biochim Biophys Acta. 2014. PMID: 23906728 Free PMC article.
-
Influence of meteorological factors and air pollution on the outbreak of severe acute respiratory syndrome.Public Health. 2007 Apr;121(4):258-65. doi: 10.1016/j.puhe.2006.09.023. Epub 2007 Feb 20. Public Health. 2007. PMID: 17307207 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous