Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases
- PMID: 14522996
- DOI: 10.1074/jbc.M306552200
Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases
Abstract
Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been shown to regulate gene silencing, metabolic enzymes, and life span. Recently, nicotinamide has been implicated as a direct negative regulator of cellular Sir2 function; however, the mechanism of nicotinamide inhibition was not established. Sir2 enzymes are multifunctional in that the deacetylase reaction involves the cleavage of the nicotinamide-ribosyl, cleavage of an amide bond, and transfer of the acetyl group ultimately to the 2'-ribose hydroxyl of ADP-ribose. Here we demonstrate that nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-acetyl peptide intermediate with regeneration of NAD+ (transglycosidation). The cellular implications are discussed. A variety of 3-substituted pyridines was found to be substrates for enzyme-catalyzed transglycosidation. A Brönsted plot of the data yielded a slope of +0.98, consistent with the development of a nearly full positive charge in the transition state, and with basicity of the attacking nucleophile as a strong predictor of reactivity. NAD+ analogues including beta-2'-deoxy-2'-fluororibo-NAD+ and a His-to-Ala mutant were used to probe the mechanism of nicotinamide-ribosyl cleavage and acetyl group transfer. We demonstrate that nicotinamide-ribosyl cleavage is distinct from acetyl group transfer to the 2'-OH ribose. The observed enzyme-catalyzed formation of a labile 1'-acetylated-ADP-fluororibose intermediate using beta-2'-deoxy-2'-fluororibo-NAD+ supports a mechanism where, after nicotinamide-ribosyl cleavage, the carbonyl oxygen of acetylated substrate attacks the C-1' ribose to form an initial iminium adduct.
Similar articles
-
SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.Curr Med Chem. 2004 Apr;11(7):807-26. doi: 10.2174/0929867043455675. Curr Med Chem. 2004. PMID: 15078167 Review.
-
Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8563-8. doi: 10.1073/pnas.0401057101. Epub 2004 May 18. Proc Natl Acad Sci U S A. 2004. PMID: 15150415 Free PMC article.
-
Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product.Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):415-20. doi: 10.1073/pnas.98.2.415. Epub 2000 Dec 26. Proc Natl Acad Sci U S A. 2001. PMID: 11134535 Free PMC article.
-
Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.Biochemistry. 2003 Aug 12;42(31):9249-56. doi: 10.1021/bi034959l. Biochemistry. 2003. PMID: 12899610
-
Enzymatic activities of Sir2 and chromatin silencing.Curr Opin Cell Biol. 2001 Apr;13(2):232-8. doi: 10.1016/s0955-0674(00)00202-7. Curr Opin Cell Biol. 2001. PMID: 11248558 Review.
Cited by
-
The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5).J Biol Chem. 2012 Aug 17;287(34):28307-14. doi: 10.1074/jbc.M112.384511. Epub 2012 Jul 5. J Biol Chem. 2012. PMID: 22767592 Free PMC article.
-
Overexpression of cytoplasmic TcSIR2RP1 and mitochondrial TcSIR2RP3 impacts on Trypanosoma cruzi growth and cell invasion.PLoS Negl Trop Dis. 2015 Apr 15;9(4):e0003725. doi: 10.1371/journal.pntd.0003725. eCollection 2015 Apr. PLoS Negl Trop Dis. 2015. PMID: 25875650 Free PMC article.
-
Comparative Mitochondrial-Based Protective Effects of Resveratrol and Nicotinamide in Huntington's Disease Models.Mol Neurobiol. 2017 Sep;54(7):5385-5399. doi: 10.1007/s12035-016-0048-3. Epub 2016 Sep 2. Mol Neurobiol. 2017. PMID: 27590140
-
Sirtuin chemical mechanisms.Biochim Biophys Acta. 2010 Aug;1804(8):1591-603. doi: 10.1016/j.bbapap.2010.01.021. Epub 2010 Feb 2. Biochim Biophys Acta. 2010. PMID: 20132909 Free PMC article. Review.
-
Structure of Sir2Tm bound to a propionylated peptide.Protein Sci. 2011 Jan;20(1):131-9. doi: 10.1002/pro.544. Protein Sci. 2011. PMID: 21080423 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases