Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 19;278(51):50985-98.
doi: 10.1074/jbc.M306552200. Epub 2003 Sep 30.

Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases

Affiliations
Free article

Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases

Michael D Jackson et al. J Biol Chem. .
Free article

Abstract

Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been shown to regulate gene silencing, metabolic enzymes, and life span. Recently, nicotinamide has been implicated as a direct negative regulator of cellular Sir2 function; however, the mechanism of nicotinamide inhibition was not established. Sir2 enzymes are multifunctional in that the deacetylase reaction involves the cleavage of the nicotinamide-ribosyl, cleavage of an amide bond, and transfer of the acetyl group ultimately to the 2'-ribose hydroxyl of ADP-ribose. Here we demonstrate that nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-acetyl peptide intermediate with regeneration of NAD+ (transglycosidation). The cellular implications are discussed. A variety of 3-substituted pyridines was found to be substrates for enzyme-catalyzed transglycosidation. A Brönsted plot of the data yielded a slope of +0.98, consistent with the development of a nearly full positive charge in the transition state, and with basicity of the attacking nucleophile as a strong predictor of reactivity. NAD+ analogues including beta-2'-deoxy-2'-fluororibo-NAD+ and a His-to-Ala mutant were used to probe the mechanism of nicotinamide-ribosyl cleavage and acetyl group transfer. We demonstrate that nicotinamide-ribosyl cleavage is distinct from acetyl group transfer to the 2'-OH ribose. The observed enzyme-catalyzed formation of a labile 1'-acetylated-ADP-fluororibose intermediate using beta-2'-deoxy-2'-fluororibo-NAD+ supports a mechanism where, after nicotinamide-ribosyl cleavage, the carbonyl oxygen of acetylated substrate attacks the C-1' ribose to form an initial iminium adduct.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources