Controlling false-negative errors in microarray differential expression analysis: a PRIM approach
- PMID: 14512352
- DOI: 10.1093/bioinformatics/btg242
Controlling false-negative errors in microarray differential expression analysis: a PRIM approach
Abstract
Motivation: Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements.
Results: Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays.
Availability: Freestanding JAVA application at http://microarray.crump.ucla.edu/focus
Similar articles
-
A generalized likelihood ratio test to identify differentially expressed genes from microarray data.Bioinformatics. 2004 Jan 1;20(1):100-4. doi: 10.1093/bioinformatics/btg384. Bioinformatics. 2004. PMID: 14693815
-
An associative analysis of gene expression array data.Bioinformatics. 2003 Jan 22;19(2):204-11. doi: 10.1093/bioinformatics/19.2.204. Bioinformatics. 2003. PMID: 12538240
-
Noise sampling method: an ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays.Bioinformatics. 2003 Jul 22;19(11):1348-59. doi: 10.1093/bioinformatics/btg165. Bioinformatics. 2003. PMID: 12874046
-
Maintaining data integrity in microarray data management.Biotechnol Bioeng. 2003 Dec 30;84(7):795-800. doi: 10.1002/bit.10847. Biotechnol Bioeng. 2003. PMID: 14708120 Review.
-
Integration of amplified differential gene expression (ADGE) and DNA microarray.IUBMB Life. 2002 Dec;54(6):335-8. doi: 10.1080/15216540216032. IUBMB Life. 2002. PMID: 12665243 Review.
Cited by
-
Divergent transcriptional profiles in pediatric asthma patients of low and high socioeconomic status.Pediatr Pulmonol. 2018 Jun;53(6):710-719. doi: 10.1002/ppul.23983. Epub 2018 Mar 12. Pediatr Pulmonol. 2018. PMID: 29528197 Free PMC article.
-
Contemporaneous Social Environment and the Architecture of Late-Life Gene Expression Profiles.Am J Epidemiol. 2017 Sep 1;186(5):503-509. doi: 10.1093/aje/kwx147. Am J Epidemiol. 2017. PMID: 28911009 Free PMC article.
-
Elevating the perspective on human stress genomics.Psychoneuroendocrinology. 2010 Aug;35(7):955-62. doi: 10.1016/j.psyneuen.2010.06.008. Epub 2010 Jul 13. Psychoneuroendocrinology. 2010. PMID: 20630660 Free PMC article. Review.
-
C/EBPβ regulates the M2 transcriptome in β-adrenergic-stimulated macrophages.Brain Behav Immun. 2019 Aug;80:839-848. doi: 10.1016/j.bbi.2019.05.034. Epub 2019 May 24. Brain Behav Immun. 2019. PMID: 31132458 Free PMC article.
-
Prospective associations between neighborhood violence and monocyte pro-inflammatory transcriptional activity in children.Brain Behav Immun. 2022 Feb;100:1-7. doi: 10.1016/j.bbi.2021.11.003. Epub 2021 Nov 17. Brain Behav Immun. 2022. PMID: 34800620 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials