The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA
- PMID: 1438273
- PMCID: PMC50423
- DOI: 10.1073/pnas.89.22.10768
The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA
Abstract
Previous work suggested that the presence of the anticodon CAU alone was enough to confer methionine acceptance to a tRNA. Conversions of Escherichia coli nonmethionine tRNAs to a methionine-accepting species were obtained by substitutions reconstructing the whole methionine anticodon loop together with preservation (or introduction) of the acceptor stem base A73. We show here that the CAU triplet alone is unable to confer methionine acceptance when transplanted into a yeast aspartic tRNA. Both non-anticodon bases of the anticodon loop of yeast tRNA(Met) and A73 are required in addition to CAU for methionine acceptance. The importance of these non-anticodon bases in other CAU-containing tRNA frameworks was also established. These specific non-anticodon base interactions make a substantial thermodynamic contribution to the methionine acceptance of a transfer RNA.
Similar articles
-
Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review.Biochimie. 1996;78(7):597-604. doi: 10.1016/s0300-9084(96)80006-x. Biochimie. 1996. PMID: 8955903 Review.
-
Binding of the yeast tRNA(Met) anticodon by the cognate methionyl-tRNA synthetase involves at least two independent peptide regions.J Mol Biol. 1992 Jun 5;225(3):897-907. doi: 10.1016/0022-2836(92)90409-d. J Mol Biol. 1992. PMID: 1602489
-
The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA.J Mol Biol. 1995 May 26;249(1):45-58. doi: 10.1006/jmbi.1995.0279. J Mol Biol. 1995. PMID: 7776375
-
Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.Nucleic Acids Res. 1992 Sep 25;20(18):4741-6. doi: 10.1093/nar/20.18.4741. Nucleic Acids Res. 1992. PMID: 1408786 Free PMC article.
-
Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis.Biochemistry. 1996 Jan 16;35(2):608-15. doi: 10.1021/bi9520904. Biochemistry. 1996. PMID: 8555234
Cited by
-
Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant.EMBO J. 1998 Jan 2;17(1):297-305. doi: 10.1093/emboj/17.1.297. EMBO J. 1998. PMID: 9427763 Free PMC article.
-
tRNA anticodon shifts in eukaryotic genomes.RNA. 2014 Mar;20(3):269-81. doi: 10.1261/rna.041681.113. Epub 2014 Jan 17. RNA. 2014. PMID: 24442610 Free PMC article.
-
Misacylation of tRNA with methionine in Saccharomyces cerevisiae.Nucleic Acids Res. 2012 Nov 1;40(20):10494-506. doi: 10.1093/nar/gks805. Epub 2012 Aug 31. Nucleic Acids Res. 2012. PMID: 22941646 Free PMC article.
-
A potential role for initiator-tRNA in pre-mRNA splicing regulation.Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11319-24. doi: 10.1073/pnas.0911561107. Epub 2010 Jun 7. Proc Natl Acad Sci U S A. 2010. PMID: 20534564 Free PMC article.
-
2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site.Protein Sci. 2000 Feb;9(2):218-31. doi: 10.1110/ps.9.2.218. Protein Sci. 2000. PMID: 10716174 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous