Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May:450:217-46.
doi: 10.1113/jphysiol.1992.sp019125.

A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i

Affiliations

A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i

D D Friel et al. J Physiol. 1992 May.

Abstract

1. We studied how in changes in cytosolic free Ca2+ concentration ([Ca2+]i) produced by voltage-dependent Ca2+ entry are influenced by a caffeine-sensitive Ca2+ store in bullfrog sympathetic neurones. Ca2+ influx was elicited by K+ depolarization and the store was manipulated with either caffeine or ryanodine. 2. For a time after discharging the store with caffeine and switching to a caffeine-free medium: (a) [Ca2+]i was depressed by up to 40-50 nM below the resting level, (b) caffeine responsiveness was diminished, and (c) brief K+ applications elicited [Ca2+]i responses with slower onset and faster recovery than controls. These effects were more pronounced as the conditioning caffeine concentration was increased over the range 1-30 mM. 3. [Ca2+]i, caffeine and K+ responsiveness recovered in parallel with a half-time of approximately 2 min. Recovery required external Ca2+ and was speeded by increasing the availability of cytosolic Ca2+, suggesting that it reflected replenishment of the store at the expense of cytosolic Ca2+. 4. During recovery, Ca2+ entry stimulated by depolarization had the least effect on [Ca2+]i when the store was filling most rapidly. This suggests that the effect of Ca2+ entry on [Ca2+]i is modified, at least in part, because some of the Ca2+ which enters the cytosol during stimulation is taken up by the store as it refills. 5. Further experiments were carried out to investigate whether the store can also release Ca2+ in response to stimulated Ca2+ entry. In the continued presence of caffeine at a low concentration (1 mM), high K+ elicited a faster and larger [Ca2+]i response compared to controls; at higher concentrations of caffeine (10 and 30 mM) responses were depressed. 6. Ryanodine (1 microM) reduced the rate at which [Ca2+]i increased with Ca2+ entry, but not to the degree observed after discharging the store. At this concentration, ryanodine completely blocked responses to caffeine but had no detectable effect on Ca2+ channel current or the steady [Ca2+]i level achieved during depolarization. 7. We propose that, depending on its Ca2+ content, the caffeine-sensitive store can either attenuate or potentiate responses to depolarization. When depleted and in the process of refilling, the store reduces the impact of Ca2+ entry as some of the Ca2+ entering the cytosol during stimulation is captured by the store.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Nature. 1991 Jun 27;351(6329):751-4 - PubMed
    1. Pflugers Arch. 1990 Jun;416(4):462-6 - PubMed
    1. Annu Rev Cell Biol. 1990;6:715-60 - PubMed
    1. J Physiol. 1990 Jun;425:85-115 - PubMed
    1. Biophys J. 1986 Nov;50(5):1009-14 - PubMed

LinkOut - more resources