Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Jul;23(5):521-36.
doi: 10.1002/neu.480230507.

Consequences of slow Wallerian degeneration for regenerating motor and sensory axons

Affiliations
Comparative Study

Consequences of slow Wallerian degeneration for regenerating motor and sensory axons

M C Brown et al. J Neurobiol. 1992 Jul.

Abstract

The time course of Wallerian degeneration in the tibial and saphenous nerves was compared in Balb/c mice and mice of the C57BL/Ola strain (Lunn et al., 1989). Axons, particularly myelinated ones, in nerves of C57BL/Ola mice are very slow to degenerate, many still being present 3 weeks after axotomy. Nuclear numbers in the distal stump peak much later and do not reach the levels found in Balb/c mice; debris removal is very slow, and Schwann cell numbers only rise slightly above normal levels in the long term. Regeneration was investigated electrophysiologically and by electron microscopy (EM). Myelinated sensory axons regenerated slowly and incompletely compared with motor ones which were only slightly slowed after nerve crush (although they were significantly hindered after nerve section). Total myelinated axon numbers were still some 20% less than normal even after 200 days in sensory nerves. Even after all axons had degenerated in C57BL/Ola mice, regeneration rates of neither myelinated nor unmyelinated sensory axons reached those achieved in Balb/c mice. It is concluded that while regeneration can eventually proceed slowly when Wallerian degeneration is much delayed, the usual rapid time course of Wallerian degeneration is necessary if axons, particularly sensory ones, are to regenerate at optimal rates and to maximum extent. While local obstruction to axon growth probably impedes the early phase of regeneration in C57BL/Ola mice, it seems possible that a lack of adequate early signals affects regeneration permanently by minimizing the cell body reaction to injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources