Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Nov;307(2):437-42.
doi: 10.1124/jpet.103.052100. Epub 2003 Sep 9.

Protease-activated receptors: new concepts in regulation of G protein-coupled receptor signaling and trafficking

Affiliations
Review

Protease-activated receptors: new concepts in regulation of G protein-coupled receptor signaling and trafficking

Joann Trejo. J Pharmacol Exp Ther. 2003 Nov.

Abstract

Most G protein-coupled receptors (GPCRs) are reversibly activated upon ligand binding. However, activation of protease-activated G protein-coupled receptors (PARs) occurs through an irreversible proteolytic event that results in the generation of a tethered ligand that cannot diffuse away. This unusual mode of PAR activation raises important questions regarding the mechanisms responsible for termination of receptor signaling. There are currently four members of the PAR family. Thrombin activates PAR1, PAR3, and PAR4, whereas multiple trypsin-like serine proteases activate PAR2. The regulation of signaling by PAR1 has been extensively studied, whereas considerably less is known about the other PARs. It has been demonstrated that rapid termination of PAR1 signaling is critical in determining the magnitude and kinetics of the cellular protease response. Therefore, elucidating the molecular mechanisms involved in the regulation of PAR signaling is essential to fully understand protease-mediated responses. Recent findings indicate that novel mechanisms contribute to PAR1 desensitization, internalization, and down-regulation. This review focuses on the intracellular mechanisms that regulate PAR signaling and the recent progress in developing inhibitors of PAR signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources